Before you <think>, monitor:

Implementing Flavell's metacognitive framework in LLMs

Monitor-Generate

Generate-Verify

Monitor-Generate-Verify

Metacognition

#LLM-Modulo Framework

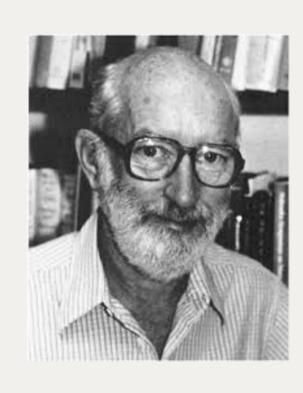
Nick Oh

socius labs
London, UK
nick.sh.oh@socius.org

Fernand R. Gobet*

Centre for Philosophy of Natural and Social Science, London School of Economics London, UK f.gobet@lse.ac.uk

*ACKNOWLEDGEMENT: This experimental implementation builds on the *Monitor-Generate-Verify* framework co-developed with Fernand Gobet.

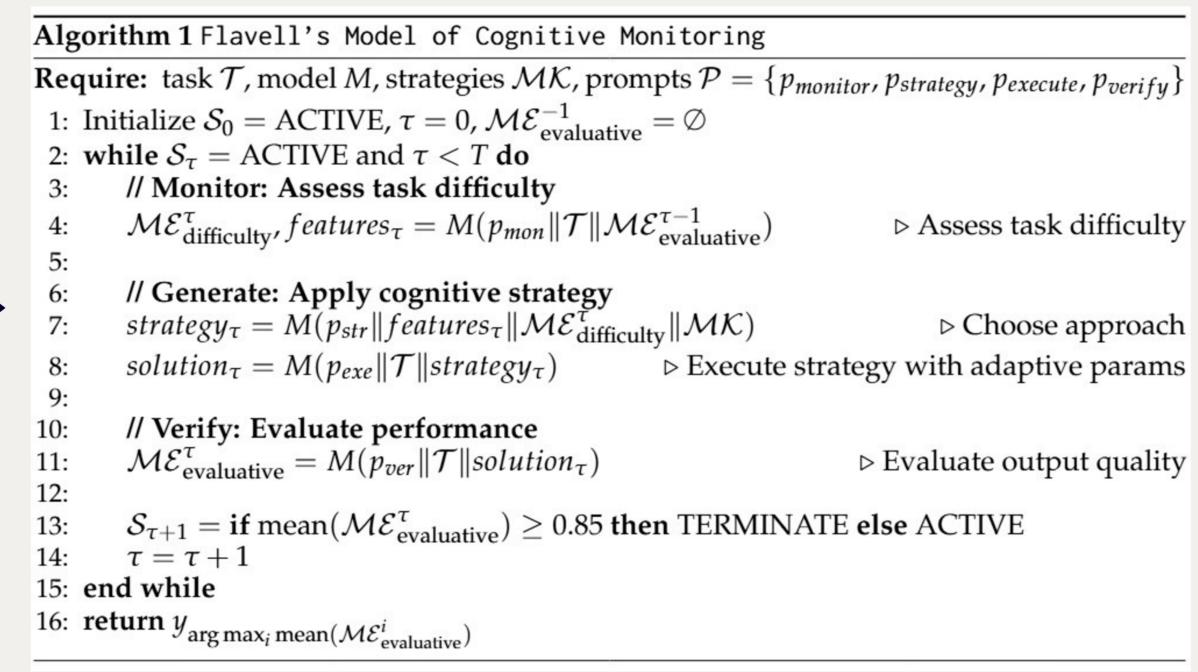

TL;DR

Monitor-Generate methods (e.g., SELF-DISCOVER) *plan* but can't *verify*; Generate-Verify methods (e.g., SELF-REFINE) *refine* but start *blind*.

We chain them via Flavell's (1979) metacognitive theory.

GSM8K: 75.4% vs 68.4% accuracy, 1.3 vs 2.0 attempts. Better initial solutions need less verification.

Background



John H. Flavell
[source: Awards for
Distinguished Scientific
Contributions: John H.
Flavell. American
Psychologist, 40(3), 291295]

```
Metacognition and Cognitive Monitoring
       A New Area of Cognitive-Developmental Inquiry
                                           JOHN H. FLAVELL Stanford University
             Monitor-Generate-Verify: Formalising Metacognitive Theory for Language
            Model Reasoning (Oh and Gobet, 2025)
Algorithm 1 Flavell's Metacognitive Regulation
 1: Initialise: S_0 \leftarrow f(\mathcal{T}, \mathcal{G}); \tau \leftarrow 0
 2: while S_{\tau} = \text{ACTIVE do}
              // MONITOR: Retrieve knowledge & assess experience
              \mathcal{MK}_{\tau} \leftarrow \mathbf{if} \ \tau = 0 \ \mathbf{then} \ \mathrm{retrieve}(\mathcal{MK}, \mathcal{T}, \mathcal{G})
                           else \mathcal{MK}_{\tau-1} \cup \text{retrieve}(\mathcal{MK}, \mathcal{ME}_{\tau-1})
             \mathcal{ME}_{\text{difficulty}}^{\tau} \leftarrow \text{feel}(\mathcal{T}, \text{Outcomes}_{\tau-1}) \oplus \text{assess}(\mathcal{T}, \mathcal{MK}_{\tau})

// GENERATE: Select & execute cognitive strategy
             CS_{\tau} \leftarrow \text{select}(s \in \mathcal{MK}_{\text{Strategy}} \mid \mathcal{ME}_{\text{difficulty}}^{\tau}, \mathcal{MK}_{\tau}, \mathcal{T}, \mathcal{G})
              \mathcal{CO}_{\tau} \leftarrow \text{execute}(\mathcal{CS}_{\tau}, \mathcal{T}, \mathcal{G})
             // VERIFY: Evaluate progress & update knowledge
            \mathcal{ME}_{\text{evaluative}}^{\tau} \leftarrow \operatorname{assess}(\mathcal{CO}_{\tau}, \mathcal{MK}_{\tau})
\mathcal{MS}_{\tau} \leftarrow \operatorname{select}(s \in \mathcal{MK}_{\text{Strategy}}^{\text{meta}} \mid \mathcal{ME}_{\text{evaluative}}^{\tau})
\mathcal{MO}_{\tau} \leftarrow \operatorname{execute}(\mathcal{MS}_{\tau}, \mathcal{CO}_{\tau}, \mathcal{MK}_{\tau}, \mathcal{G})
             \mathcal{MK} \leftarrow \text{update}(\mathcal{MK}, \Phi_{\tau}) \text{ where } \Phi_{\tau} = (\mathcal{ME}_{\tau}, \text{Strategy}_{\tau}, \text{Outcome}_{\tau})
```

 $S_{\tau+1} \leftarrow \mathbf{if} \ \mathrm{goal_achieved}(\mathcal{CO}_{\tau}, \mathcal{G}) \ \mathbf{then} \ \mathrm{TERMINATE} \ \mathbf{else} \ \mathrm{ACTIVE}$

as $0.3 + 0.2*ME_{difficultv}$

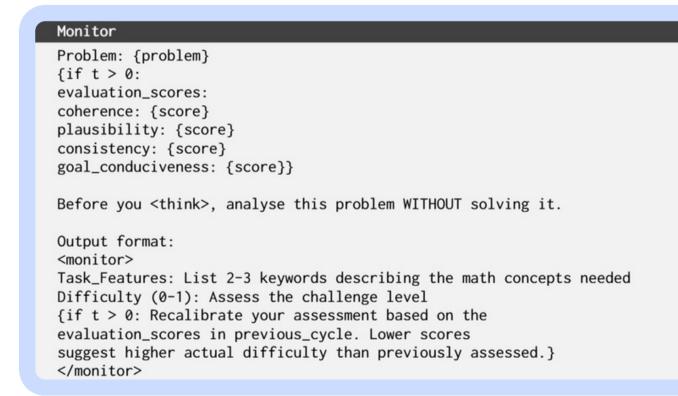
MGV framework (zero-shot)

MKAgent Knowledge about cognitive agents' characteristics and capabilities

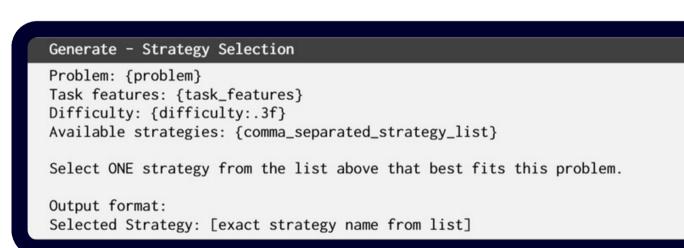
MK_{Task}

Knowledge about cognitive situation assessment

 $\tau \leftarrow \tau + 1$


17: end while

MK_{Strategy}


Knowledge concerning the effectiveness of cognitive strategies and metacognitive strategies

MK_{Strategy} as a pre-established repertoire of 20 domain-specific strategies (Didolkar et al., 2024)

Flavellian Metacognitive Knowledge

MONITOR

Generate - Strategy Execution Problem: {problem} Strategy: {strategy_type} Output format: Work through the problem step by step using the {strategy_type} approach. Show all calculations and reasoning. {if t > 0: previous_cycle: difficulty: {difficulty} task_features: {task_features} strategy_used: {strategy_type} reasoning: [full solution text] evaluation_scores: coherence: {score} plausibility: {score}
consistency: {score}
our paragraph text goal_conduciveness: {score} evaluation: [full evaluation text]} </think> <answer> Output only the final numerical answer (no units or text).

GENERATE

GENERATE VERIFY Token budget scales as 400 + TERMINATE when mean $400*ME_{difficulty}$ and temperature evaluation ≥ 0.85 or T = 3

Adaptive Resource Allocation

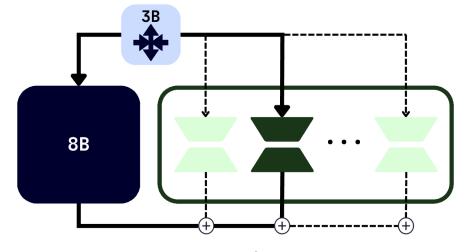
```
Verify
Problem: {problem}
Solution: {solution}
Evaluate this solution on these dimensions (0-1 scale):
1. COHERENCE: Do the steps logically connect?
2. PLAUSIBILITY: Is the approach reasonable?
3. CONSISTENCY: Are calculations correct?
4. GOAL-CONDUCIVENESS: Does it answer the question?
Output format:
<evaluate>
Coherence: X.X
Plausibility: X.X
Consistency: X.X
Goal-conduciveness: X.X
Evaluation: [Provide a 2-3 sentence analysis explaining the scores.
Identify specific errors or strengths. For low scores, indicate
what went wrong (e.g., "arithmetic error in step 3", "misunderstood
the question", "skipped crucial reasoning"). For high scores, note
what worked well. Be specific and actionable.]
</evaluate>
```

VERIFY

Experimental Setup

meta-llama/Llama-3.1-8B-Instruct (+NVIDIA H100 SXM)

Self-Verification (Weng et al., 2022): Generate-*k*-Verify (w/ majority voting) **SELF-REFINE** (Madaan et al., 2023): Iterating Generate-Verify *k* times **MGV** (Flavell): Iterating Monitor-Generate-Verify *k* times


Results

Method	Accuracy	Avg Time (s)	Avg Attempts
Self-Verification	442/659 (67.07%)	7.52	1.2
Self-REFINE	451/659 (68.44%)	6.98	2.0
MGV (Flavell)	497/659 (75.42%)	9.60	1.3

<u>Future Work (+ pilot experiment)</u>

LLM Modular Framework

• Small models (0.5B) can reliably *Plan*, while *Execution* demands substantially larger models (Qin et al., 2025) (for our preliminary exploration of this direction see below)

multi-LoRA as MK_{Strategy}

Branched curriculum (2 epochs shared arithmetic → 3 specialized LoRAs @ 1 epoch each) with 3B routing outperformed 4-epoch GRPO by 1.4pp on GSM8K (8B models)

Model Intrinsic MK

• Following V-STaR's approach (Hosseini et al., 2024), future work could **train the Monitor through iterative self-supervised learning**: generate diverse solutions per problem, contrast successful versus failed attempts using DPO/GRPO, and progressively refine both difficulty assessment and strategy selection capabilities — building model-intrinsic metacognitive knowledge through bootstrapped preference learning.

Metacognitive Space within LLM

- Implicit confidence measures dervied from token likelihoods exhibit greater metacognitive sensitivity than explicitly prompted confidence (Xiong et al., 2023)
- Some evidence of subjectivity (e.g., confidence and certainty) corresponding to linearly seperable directions in representations (Zou et al., 2023; Liu et al., 2023)