In Defence of Post-hoc Explainability

Nick Oh
socius labs
nick.sh.oh@socius.org

Abstract

This position paper defends post-hoc explainability methods as legitimate tools for
scientific knowledge production in machine learning. Addressing criticism of these
methods’ reliability and epistemic status, we develop a philosophical framework
grounded in mediated understanding and bounded factivity. We argue that scientific
insights can emerge through structured interpretation of model behaviour without
requiring complete mechanistic transparency, provided explanations acknowledge
their approximative nature and undergo rigorous empirical validation. Through
analysis of recent biomedical ML applications, we demonstrate how post-hoc meth-
ods, when properly integrated into scientific practice, generate novel hypotheses
and advance phenomenal understanding.

1 Introduction

Is explainable Al (XAl) in its peril [Weber et al.,2024]? Perhaps. However, this view has yet to
gain mainstream acceptance. Driven by the increasing complexity and black-box nature of machine
learning models, the field has witnessed an unprecedented surge in post-hoc explanation methods
since 2017 [Saeed and Omlin, 2023} [Nagahisarchoghaei et al.| [2023| |[Retzlaff et al., [2024], with
bibliometric analyses documenting exponential growth in XAI approaches [Sharma et al.| [2024]].
This momentum manifests in substantial industry adoption exemplified by tools such as Captum
[Kokhlikyan et al., [2020].

However, this popularity-driven surge cannot obscure the substantive criticisms that challenge the
fundamental foundations of post-hoc explainability methods. Challenging both the theoretical
premises and practical reliability of post-hoc explainability methods, these criticisms include:

* Fidelity Guarantees: Critics such asRudin|[2019] argue that post-hoc explanation methods
cannot provide genuine scientific understanding because they only approximate model
behaviour rather than granting direct access to underlying mechanisms. This critique has
gained formal computational support: recent complexity research demonstrates that gener-
ating explanations that are both interpretable and faithfully replicate model predictions is
computationally intractable for most non-trivial models. Specifically, Bassan et al.| [[2024]
and |Adolfi et al.| [2025]] prove that local and global interpretability tasks, as well as dis-
covering concise logical circuits for inner interpretability, are typically NP-hard or worse,
precluding strong fidelity guarantees except in highly restricted cases.

* Empirical Unreliability: A growing body of empirical investigations [Hooker et al., 2019,
Laugel et al., 2019bja, |Slack et al., 2020, |Adebayo et al., 2022, Bilodeau et al., 2024,
Wei et al., 2024 has revealed pervasive limitations across the entire spectrum of post-hoc
interpretability methods — spanning local and global approaches, model-agnostic and model-
specific techniques alike. For instance, [Wei et al.| 2024} pp. 7-10] addressed the issue of
robustness in post-hoc methods, demonstrating that many popular methods fail to provide
stable explanations. Most notably, |Bilodeau et al.| [2024] demonstrate that widely-adopted
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feature attribution methods (e.g., SHAP) can provably fail to outperform random guessing
when inferring model behaviour in neural networks.

* Scientific Methodology Concerns: Scientific domains remain particularly reluctant to
accept post-hoc explanations as legitimate epistemic tools, with domain experts questioning
their reliability for knowledge generation [Klein et al., 2024]. |Ghassemi et al.| [2021] warn
that post-hoc methods create ‘false hope’ in critical applications by appearing to provide
understanding without reliable epistemic foundations. This critique fundamentally questions
whether these methods can generate legitimate scientific knowledge rather than merely
plausible-sounding narratives that satisfy human cognitive biases. (add Madsen et al. "empty
argument")

» Epistemological Imperative: Unlike other computational research domains that can rely
on predictive accuracy or measurable outcomes for validation, interpretability researchers
lack the empirical validation mechanisms that typically legitimate scientific claims — we
rarely have the ground truth for benchmark evaluation in on the quality of generated
explanations [Doshi-Velez and Kim, [2017} Yang et al.,2019]], and the existence of a ground
truth explanation is still highly debated [Bommer et al.| 2024]. This structural absence is
compounded by the field’s methodological fragmentation, where no universal consensus
exists on what methodology should be applied in evaluating XAl methods [Ehsan and Riedl}
2024], leading to repeated cycles where we take faithfulness for granted across different
paradigms, later proving inadequate [Madsen et al.| 2024].

Yet we argue that post-hoc interpretability methods can provide epistemically justified scientific
understanding despite offering imperfect approximations of model behaviour. Rather than
demanding complete, factive explanations — which may be unattainable for complex Al systems —
we propose that scientific knowledge emerges through (1) structured interpretation that mediates
between model behaviour and phenomenal understanding, and (2) approximative explanations that
acknowledge their limitations whilst maintaining empirical accountability. This position recognises
that scientific progress often proceeds through strategic simplifications, and post-hoc methods, when
properly validated, can serve this same epistemic function.

The remaining paper is structured as follows: Section [2]examines the concept of interpretability in
ML systems, contrasting intrinsic and post-hoc approaches. Through distinguishing between model
understanding and phenomenon understanding, we establish the key theoretical relationships and
assumptions that underpin our analysis. Section [3]introduces contemporary philosophical discussions
relevant to ML interpretability, making these insights accessible to the broader ML community.
We examine three interconnected themes: reliability and justifiability, scientific understanding and
explanation, and scientific practice in the age of Al Section @ presents our integrated philosophical
framework to defend post-hoc explainability. Through empirical case study, we also demonstrate
how this framework translates theoretical principles into practical scientific discovery. Section [3]
addresses and re-examines key criticisms of post-hoc methods. We offer constructive responses to
concerns about approximation, fidelity, and confirmation bias. Section [6] concludes by outlining
future research directions, identifying critical relationships in need of deeper theoretical examination
and empirical validation. Throughout the paper, we minimise philosophical jargon where possible,
with key concepts further explained in Appendix |C|for readers seeking additional clarification.

2 On Interpretability

Interpretability in ML systems is fundamentally pluralistic [Zednik, [2021]], encompassing multiple
distinct concepts and serving diverse stakeholder needs. As|Lipton|[2016] and Beisbart and Riz|[2022]
emphasise, the very notion of interpretability shifts and adapts based on stakeholder expectations,
posed questions, and the explanatory virtues deemed most relevant within specific contexts.

This plurality in interpretation manifests most clearly in the distinct approaches taken by different
stakeholders. Computer scientists typically gravitate towards what we might term model understand-
ing — a focus on comprehending the properties of the model itself, including its input-output mappings,
learned representations, and decision boundaries (e.g., seeking to understand model grokking through
mechanistic interpretability [Nanda et al.,2023])). In contrast, domain experts in scientific fields often
seek to understand how model outputs inform or align with real-world phenomena — what we might



term phenomenon understanding. This distinction between model and phenomenon understanding is
particularly salient when examining the scientific applications of ML interpretability in detail.

For scientific applications, which are the focus of this position, interpretability encompasses our
epistemic capacity to understand and articulate how Al systems generate insights about natural
phenomena in ways that advance scientific understanding. This relationship begins with a true function
f(X) representing the natural phenomenon of interest, where the model learns an approximation
h*(X) within a hypothesis space H that represents the set of possible functions.

This broader conception is particularly important when considering post-hoc methods, whose criti-
cisms often stem from evaluating them solely on their ability to faithfully explain a model’s learnt
function (h* (X)) through some interpretable approximation (p*(X)). However, in scientific contexts,
the key relationship is not just between h*(X) and p*(X), but how interpretation relates to the
underlying natural phenomenon f(X) being studied. This relationship manifests differently between
intrinsically interpretable (Ta) and post-hoc approaches (Ib) (Appendix [A] Whilst intrinsically inter-
pretable models maintain direct human comprehensibility by constraining A*(X), post-hoc methods
introduce an additional function p* (X ) learnt from a space of possible explanations P to approximate
h*(X)’s behaviour in an interpretable way. These distinct approaches illustrate the fundamental
tension between model capability and human comprehensibility in scientific ML applications, where
post-hoc methods potentially offer the ability to capture more complex relationships between the
model and the underlying phenomenon, albeit through an additional layer of interpretation.

These relationships encompass multiple interconnected aspects: the theoretical capacity of the
hypothesis space to capture the true phenomenon (f(X) and #), the representational accuracy of
training data (f(X) and X), the model selection process (% and h*(X)), the explanation generation
mechanism (P and p* (X)), the correspondence between model and explanation spaces (H and P),
and the properties of the post-hoc explanations themselves (p*(X)).

However, this position paper will primarily address the relationship between phenomenon and
explanation (f(X) and p*(X)). Whilst other relationships have been extensively studied within
the ML community — such as f(X) to H (e.g., Vapnik-Chervonenkis dimension suggesting that
the capacity of the hypothesis space increases with both network width and depth [Bartlett and
Maass, 2003[]) and #H to h*(X) (e.g., Structural Risk Minimisation demonstrating near-optimal
learning guarantees [Stamouli et al., |2024]) — these discussions predominantly address engineering
considerations rather than epistemological foundations.

This position aims to bring attention to the f(X) to p*(X) relationship for three reasons. First, as
Al models grow in complexity and opacity, p*(X) serves as our primary epistemic window into
understanding complex phenomena f(X) — a role that requires timely attention as model complexity
grows. Second, this relationship bridges fundamental gaps in scientific AL, such as, between black-box
models and human comprehension, between computational capabilities and scientific knowledge
generation, and between theoretical frameworks and their practical applications in scientific discovery.
And lastly, given the growing prevalence of post-hoc methods in studying complex natural phenomena,
we require a philosophical framework to validate these methods as legitimate tools for scientific
knowledge production.

To further contextualise our discussion, we establish several key assumptions, beyond the fundamental
premise that h* (X)) effectively approximates f(X). These assumptions include:

1. Accessibility of AI Systems: When discussing post-hoc explanations, we concentrate on open
and accessible black-box algorithms, rather than proprietary systems. The primary challenge in
understanding these algorithms stems from their inherent complexity, rather than a complete lack of
knowledge.

2. Scientific AI Models: Our analysis centres on supervised learning models designed to aid in science
or knowledge discovery, such as predictive models in scientific research. We deliberately exclude
discussion of interpretability in generative models, as they present distinct challenges beyond our
current scope.

3. Imperfect but Justified Approximations: We assume that task-specific and properly validated
post-hoc methods, when embedded within structured scientific practices, can provide empirically
testable insights that advance scientific understanding. Whilst these methods may offer imperfect
approximations of model behaviour, their epistemic value emerges not from perfect fidelity alone, but



from their ability to generate falsifiable hypotheses, guide empirical investigations, and integrate with
domain knowledge through systematic validation processes.

Having established these assumptions and motivations, we now turn to examine the philosophical
foundations that underpin post-hoc explainability in scientific ML. This examination is particularly
timely as the ML community increasingly grapples with questions that extend beyond purely tech-
nical considerations — questions that philosophy of science has wrestled with for centuries. By
bridging these disciplines, we can leverage established philosophical frameworks to address emerging
challenges in Al-driven scientific discovery, while simultaneously enriching both fields through
their intersection. Moreover, as ML increasingly participate in scientific knowledge production,
understanding their epistemological status becomes not merely an academic exercise, but a practical
necessity for ensuring the validity and reliability of Al-generated scientific insights.

3 Philosophical Foundations

3.1 On Reliability and Justifiability

Traditional epistemology distinguishes between two forms of justification Pappas|[2005]: internalist
approaches (which require that we can consciously access and articulate our reasons for believing
something) and externalist approaches (which accept that reliable processes can justify beliefs even
if we cannot fully explain how they work). Whilst intrinsic interpretability aligns with internalist
approaches by emphasising direct access to reasoning processes, post-hoc methods align more
naturally with externalist frameworks.

This distinction becomes particularly salient in the context of ML systems, where the inherent
methodological opacity (inability to trace computational steps) and epistemic opacity (inability
to understand what knowledge is encoded) of Deep Neural Networks (DNN) [Humphreys| [2009]
challenges traditional notions of justification. This opacity manifests in two possible ways: through the
algorithmic complexity that makes comprehensive understanding impossible, and through cognitive
limitations that hinder human interpretation of the system’s behaviour |Duran|[2023|].

Duran’s [2023]] computational reliabilism (CR) addresses this challenge by proposing a framework
that shifts focus from complete transparency to reliable belief-forming methods. CR delineates
three categories of reliability indicators: (1) Technical Robustness of Algorithms, encompassing
design, implementation, and maintenance factors; (2) Computer-based Scientific Practice, involving
algorithmic implementation of scientific theories and expert assessment; and (3) Social Construction
of Reliability, addressing the socially mediated processes of acceptance across scientific communities.

This framework has significant implications for post-hoc explainability methods in two ways. First,
it suggests that scientific justification can emerge from the systematic validation of these methods
through multiple reliability indicators, rather than requiring complete mechanistic understanding.
Second, it provides a philosophical foundation for evaluating post-hoc methods based on their
demonstrated reliability in connecting model behaviour to scientific phenomena, rather than their
ability to provide complete transparency. This perspective reframes the epistemic status of post-hoc
methods from approximate tools to potentially legitimate sources of scientific knowledge, provided
they meet rigorous standards of reliability across technical, practical, and social dimensions.

3.2 On Scientific Understanding and Explanation

According to Sullivan| [[2022]], the relationship between explanation and understanding in complex
models hinges critically on the concept of “link uncertainty" — the gap between a model’s theoretical
predictions and empirical reality. Sullivan argues that while models can be epistemically opaque
(meaning their internal workings are not fully transparent), this opacity does not necessarily pre-
vent them from providing genuine understanding, provided there is sufficient empirical evidence
connecting the model to real-world phenomena. In other words, we do not necessarily need to
fully understand how a model works internally; what matters more is understanding how the model
connects to the real-world system it is studying.

Sullivan identifies three distinct types of explanatory questions we can ask about models: how
the model itself works, how-possibly questions about potential mechanisms, and why/how-actually
questions about real-world phenomena. The decisive factor in moving from how-possibly to how-



actually explanations is reducing link uncertainty through scientific evidence. This evidence must
connect the model’s theoretical insights to actual causal mechanisms in the target phenomenon.
Importantly, Sullivan argues that understanding does not necessarily require complete knowledge of
how a model works internally. Instead, what matters is the strength — whether it be the amount, kind
or quality — of scientific and empirical evidence connecting the model’s predictions or insights to
real-world phenomena.

This perspective gains additional significance through Beisbart and Réz’s [2022] analysis of the
factivity dilemma — a fundamental tension between accuracy and comprehensibility in understanding
DNNs. The principle of factivity (the requirement that explanations must be entirely true) demands
that explanations be grounded in facts, yet modern DNNs have become so complex that we can
only comprehend them through simplifications and idealisations. This creates an apparent paradox:
explanations must either sacrifice accuracy for comprehensibility or maintain accuracy at the cost of
being unusable.

This tension reflects a fundamental debate in philosophy of science about the relationship between
explanation and understanding. Traditional accounts of scientific explanation, such as the Deductive-
Nomological model, require factivity—that all elements of an explanation must be true. Yet scientific
practice routinely employs strategic simplifications that sacrifice complete accuracy for tractable
insights. This has led to two opposing views: factivists maintain that genuine understanding requires
completely true explanations, treating simplifications as merely useful tools, whilst non-factivists
argue that approximate models can provide legitimate understanding despite their imperfections. At
the heart of this debate lies a crucial question: must understanding necessarily require truth, or can it
emerge through useful approximations? When we refer to the “epistemic status” of post-hoc methods,
we are asking precisely this — whether the knowledge claims they generate can be justified and relied
upon, even when they offer only approximations rather than complete truth. Importantly, this suggests
a distinction between interpretability, which aims for factual explanations of model behaviour, and
scientific understanding of phenomena through post-hoc methods, which may not require the same
level of factivity. This distinction offers a practical resolution: whilst complete explanations remain
an important goal, we can achieve meaningful scientific understanding through carefully bounded
approximations.

3.3 On Scientific Practice

The traditional view of ML as fundamentally distinct from conventional scientific methods — what
scholars term the “distinctness claim" — has been challenged by Andrews’ [2023]] analysis of theory-
ladenness (how our theoretical assumptions inevitably shape what we observe and measure) in ML.
The distinctness claim, suggesting that ML methods operate without prior theoretical assumptions,
fundamentally misunderstands the nature of scientific data and practice. As Andrews demonstrates,
even the most basic experimental designs reveal how data and scientific practice are inherently
theory-laden, from the very act of investigation to the choice of measurement parameters.

Freiesleben et al.[[2024]] further advance this understanding by proposing “holistic representationality”
(HR) — where we interpret the model’s overall behaviour — as an alternative to traditional “elementwise
representationality" (ER) — where each model component directly represents something meaningful.
Traditional scientific models followed what the authors call ER, where each model component —
whether parameters, variables, or relationships — directly represented something meaningful about the
phenomenon being studied. For instance, in a simple physics model, mass and velocity parameters
directly correspond to physical properties. However, modern ML models, particularly DNNs, do not
offer this kind of straightforward interpretation — their individual components (e.g., network weights)
do not map clearly to real-world phenomena.

Rather than viewing this as a limitation, the authors proposed HR. Instead of trying to interpret
individual components, they suggest analysing the model’s behaviour as a whole through what they
call “property descriptors" (e.g., cPDP, cFI, SAGE, and PRIM for global property, while ICE, cSV,
ICI and Counterfactuals for local property; see pp.21-25 for further details). This approach aligns with
recent findings from Bilodeau et al.|[2024], demonstrating that generic feature attribution methods
can be unreliable for inferring model behaviour, but task-specific approaches can dramatically
improve interpretability. While Freiesleben et al. provide a theoretical framework, Bilodeau et al.
offer practical evidence of its importance, showing how domain-specific interpretability methods



(e.g., perturbation) can be more reliable than general-purpose approaches like SHAP or Integrated
Gradients.

This modern understanding reveals ML not as distant break from traditional scientific methods, but
as a new set of tools requiring theoretical understanding and methodological rigour. The framework
demonstrates how post-hoc methods, when properly constructed and validated, can serve as legitimate
tools for scientific inquiry. This approach maintains scientific rigour whilst acknowledging the unique
characteristics of modern ML systems, suggesting a path forward that neither overstates ML’s
distinctness nor understates its methodological challenges.

4 Defending Post-hoc Explainability for Scientific ML

The philosophical foundations discussed above together suggest a more nuanced understanding
of post-hoc interpretability methods in scientific ML. Building on these perspectives, we now
develop a comprehensive framework that synthesises these insights and demonstrates their practical
implications. We first present an integrated philosophical framework that establishes the epistemic
validity (knowledge-generating legitimacy) of post-hoc methods in scientific inquiry, followed by a
real-world case study that illustrates these principles in practice.

4.1 An Integrated Framework

The epistemological relationship between ML models and scientific understanding requires a synthesis
of multiple philosophical frameworks to justify post-hoc interpretability methods in scientific inquiry.
At its foundation lies Freiesleben et al.’s [2024]] distinction between elementwise representationality
(ER) and holistic representationality (HR). While traditional scientific models follow ER, where each
model component directly represents a physical property, modern ML models necessitate HR, where
understanding emerges from analysing system-level behaviours and patterns.

This shift from ER to HR gains deeper significance when considered alongside three complementary
philosophical perspectives. Andrews’ [2023]] theory-ladenness reveals how even our choice of inter-
pretability methods reflects theoretical assumptions about both phenomena and models. Beisbart and
Riz’s [2022] factivity dilemma highlights the inherent tension between accuracy and comprehensibil-
ity in complex models. Sullivan’s [2022] link uncertainty framework demonstrates how scientific
understanding can emerge despite incomplete mechanistic knowledge.

The HR approach offers a practical resolution to these philosophical challenges. Rather than pursuing
perfect component-level fidelity, it embraces holistic interpretation while maintaining scientific
rigour. This aligns with empirical evidence that task-specific interpretability methods outperform
general-purpose approaches [Bilodeau et al.| [2024], suggesting that scientific understanding requires
carefully tailored methods for specific research contexts. Through this lens, post-hoc methods serve
not to eliminate uncertainty, but to manage it through rigorous, testable connections between model
behaviour and phenomenal understanding |Popper| [2005].

Drawing on pragmatist philosophy [Putnam|[1995]], which values practical consequences over abstract
truth, we propose that post-hoc methods’ epistemic value lies in their role as mediators between
ML systems and human scientific understanding. This mediated nature of understanding, combined
with the recognition that science often advances through strategic approximations, leads us to two
key principles: mediated understanding and bounded factivity. Post-hoc interpretability methods
thus serve as epistemological interfaces that actively participate in knowledge falsification and
expansion, capable of generating new scientific insights when maintaining scientific rigour.

4.1.1 Mediated Understanding

Scientific understanding through machine learning emerges not through direct model interpretation,
but through a complex process of mediated interaction. The concept of mediated understanding
describes how scientific knowledge emerges through the structured interaction between four key
elements: model behaviour, interpretability methods, domain knowledge, and empirical validation.
This principle recognises that scientific understanding through ML is inherently mediated — where
direct access to model mechanics is neither necessary nor sufficient for scientific insight [Sullivan
[2022], Beisbart and Réz| [2022].



The epistemic validity of post-hoc methods stems from their role as mediators in a bidirectional
knowledge-creation process. In one direction (Model — Phenomenon), interpretability methods reveal
patterns in model behaviour, which then tentatively suggest hypotheses about phenomena. These
hypotheses, when tested empirically, provide new phenomenal understanding. In the other direction
(Phenomenon — Model), domain knowledge guides the selection and refinement of interpretability
methods, whilst empirical validation helps refine our interpretive approaches and identify relevant
model behaviours for investigation. This bidirectional mediation provides epistemic justification
because it ensures that interpretability methods are not merely describing model behaviour, but
are actively participating in a cycle of hypothesis generation, empirical validation, and knowledge
refinement — the very essence of scientific inquiry.

4.1.2 Bounded Factivity

Building on our discussion of mediated understanding, we now turn to bounded factivity, which
helps resolve fundamental tensions between the approximative nature of post-hoc methods and their
epistemic value for scientific understanding. Rather than demanding complete factivity — perfect
correspondence between interpretation and model mechanics — bounded factivity acknowledges truth
within explicitly acknowledged limits and simplifications. This aligns with traditional scientific
practice, where scientists routinely use simplified models that deliberately deviate from reality to
gain understanding of complex phenomena Beisbart and Riz|[2022], [Sullivan| [2022]].

The recognition of strategic simplification’s role in science helps reconceptualise the epistemic status
of post-hoc interpretability methods. Recent empirical work by Bilodeau et al.|[2024]]] demonstrates
that whilst many general-purpose post-hoc methods may be unreliable, carefully designed, task-
specific approaches can provide reliable insights within bounded contexts. By aligning interpretability
methods with specific scientific goals|Freiesleben et al.|[2024] and validating them through systematic
empirical testing [Sullivan|[2022], we can achieve meaningful understanding within acknowledged
bounds, just as traditional scientific models advance understanding despite their simplifications.

4.1.3 Structured Process of Scientific Discovery

The philosophical framework we have established can be operationalised into a structured process for
generating scientific knowledge through post-hoc methods (2} ??). This process, illustrated through
a cyclic interaction between model behaviour, interpretability methods, and domain knowledge,
demonstrates how post-hoc methods can contribute to scientific understanding whilst maintaining
epistemic rigour. The diagram pairs each theoretical component with a concrete example from type 2
diabetes research (detailed in the next subsection), providing a practical roadmap for how post-hoc
interpretability methods can generate legitimate scientific knowledge.

4.2 Bridging Philosophy and Practice: A Case Study

The recent work by Klein et al.|[2024] on explainable Al-based analysis of pancreatic tissue in type 2
diabetes (T2D) provides a compelling demonstration of our philosophical framework in action. Their
study exemplifies how post-hoc explainability methods can generate legitimate scientific knowledge
through systematic application of mediated understanding and bounded factivity principles.

The study demonstrates mediated understanding through carefully orchestrated interactions between
model behaviour, interpretability methods, and domain expertise. The translation phase employed
multiple XAl techniques — attention mechanisms and attribution methods —- to convert complex
model computations into interpretable visualisations. This translation was inherently theory-laden:
the selection of six immunostaining markers (insulin, glucagon, somatostatin, PECAM1, perilipin
1, and tubulin beta 3) reflected theoretical understanding whilst remaining open to novel discover-
ies. Remarkably, their best-performing model focused on islet a- and d-cells along with neuronal
structures rather than S-cells, challenging traditional assumptions about T2D pathophysiology. This
unexpected finding emerged through the interaction between model behaviour and domain exper-
tise, demonstrating how post-hoc methods can reveal insights that transcend existing theoretical
frameworks.

The bounded factivity principle manifests powerfully in their validation approach. Rather than
claiming complete mechanistic understanding, the researchers demonstrated scientific rigour — the
strict application of the scientific method to experimental design and interpretation [Klein et al., 2024,



Weber et al.} 2024]] — by explicitly bounding their claims within testable hypotheses. They developed
targeted biomarkers to quantify specific observations: adipocyte-to-islet proximity (measured in
micrometres), fibrosis density patterns, and morphological features. These biomarkers underwent
systematic validation through generalised mixed linear models (GMLM), controlling for clinical
covariates (age, sex, BMI) and random effects (cohort, staining method). Notably, they achieved
statistical significance for key associations, whilst acknowledging limitations such as segmentation
challenges.

Klein et al.|[2024]] compellingly demonstrated how post-hoc explainability methods advance scientific
understanding beyond mere model interpretation. Their discovery that islets in T2D patients are
significantly closer to adipocytes suggests paracrine effects impacting islet function — a hypothesis
that emerged directly from XAI-guided analysis. The unexpected finding that «-cells, d-cells, and
neuronal markers outperformed -cell markers in prediction challenges the S-cell-centric view
of T2D and suggests more complex pathophysiology involving islet innervation. These insights
were not merely descriptions of model behaviour but genuine contributions to understanding T2D
pathogenesis, validated through statistical analysis and grounded in biological plausibility. The study
thus exemplifies how post-hoc methods, when embedded within structured scientific practices and
constrained by bounded factivity, serve as legitimate tools for scientific discovery.

5 Re-assessing Alternative Views

5.1 Approximation and Fidelity

Rudin| [2019] and |Ghassemi et al.[[2021]] argue that post-hoc explanations are problematic due to
their approximative nature. This critique necessitates careful examination of distinct but related
concerns: the factivity of explanations and the nature of understanding in scientific practice. The
dilemma presents itself thus, completely accurate explanations of complex ML models would merely
duplicate their opacity, whilst simplified explanations necessarily introduce some degree of falsehood.
This apparent tension can be productively addressed through the lens of non-factive understanding in
science Beisbart and Riz|[2022].

Interpretability exists on a spectrum, with increased epistemic value and practical utility correlating
with higher degrees of interpretability. This approach aligns with the concept of verisimilitude
(“closeness to truth”), where approximations to truth, though imperfect, retain epistemic worth |Oddie
[2001]]. Although post-hoc explanations lack performance guarantees and do not fully capture model
behaviour, this limitation need not compromise their epistemological value if we maintain awareness
of departure [Kvanvig [2009] — conscious recognition of where and how our explanations diverge from
ground truth. Many scientific and analytical tools rely on strategic idealisations that, despite their
non-factive nature, provide valuable insights and practical utility. The key is maintaining empirical
accountability through testable predictions, situating approximations within relevant theoretical
frameworks, and providing clear scope conditions for the validity of interpretations.

Just as scientific models generally involve idealisations that technically violate factivity without com-
promising their utility for understanding, post-hoc explanations can provide genuine scientific insight
even while containing strategic simplifications. This suggests that the key to maintaining scientific
rigour lies not in perfect factivity, but in transparent acknowledgment of simplifications coupled
with continuous refinement through empirical validation. Both intrinsically interpretable models
and post-hoc explanations are simplifications of the complex systems they represent. Accepting an
intrinsically interpretable model as ‘understandable’ and having some fidelity to the real world is
philosophically analogous to accepting a post-hoc explanation that is ‘understandable’ and has some
fidelity to the original model. The fidelity between complex systems (real world or Al) and any model
(intrinsic or post-hoc) is inherently imperfect, yet this imperfection does not negate their scientific
value when properly bounded and validated.

5.2 Faithful Explanation and Confirmation Bias

Rudin’s [2019]] critique of post-hoc methods focuses on two potential pitfalls: incomplete (local)
explanations and unjustifiable explanations. However, local explanations could serve as distinct
epistemic tools that offer granular insights into model behaviour. These local insights can generate
testable hypotheses about both model behaviour and phenomenal relationships, identify edge cases



that reveal important patterns, and expose nuances that global explanations might miss. Local
explanations may complement rather than compete with global understanding. Regarding unjustifiable
explanations, our framework suggests that even apparently problematic model behaviours — such as
scientifically unsound judgments or confounding variables — can advance scientific understanding
when properly interpreted. We recognise that identifying flaws in model reasoning contributes
valuable knowledge about both model limitations and phenomenal complexity. This aligns with how
sciences historically progress through understanding both positive and negative results.

Ghassemi et al.|[2021] raise a complementary concern about confirmation bias in interpreting post-
hoc explanations, suggesting that humans might draw overconfident conclusions from potentially
unreliable interpretations. This "interpretability gap" could potentially foster false confidence in
the model’s reliability or fairness. The limitations [Ghassemi et al.| describe are not unique to Al
explanations but are inherent in complex judgements, whether human or artificial. Human experts,
like AI systems, can fall prey to confirmation bias, potentially leading to overconfidence in their
interpretations or explanations. Following this reasoning to its logical conclusion, one might argue
that we should be equally sceptical of human expert explanations as we are of Al-generated ones.
Taken to an extreme, this line of thinking could lead to an argument for minimising reliance on
expert explanations altogether, whether human or Al-generated. Instead, one might advocate for
sole reliance on predefined, explicit "if-then" rules, aiming to eliminate the subjectivity and potential
biases inherent in both human and Al interpretations. Yet, this conclusion overlooks the value of both
human and Al-generated post-hoc explanations.

Rather than suggesting we should abandon post-hoc explanations in favour of purely rule-based
approaches, our framework advocates for their refinement and systematic validation. Just as sciences
have developed methods for managing human cognitive biases while preserving the value of expert
insight, we can develop approaches to post-hoc interpretation that acknowledge limitations while
maximising epistemic value through careful bounds and empirical validation.

6 Discussion

This position paper has several limitations that warrant acknowledgement. First, our philosophical
framework relies primarily on a single empirical case study (Klein et al., 2024) to demonstrate
practical application. Whilst this study provides some evidence, additional examples across diverse
scientific domains would strengthen our argument. Second, we focus exclusively on supervised
learning for scientific discovery, excluding important ML paradigms such as unsupervised learning,
reinforcement learning, and generative models, which may require different epistemological consid-
erations. Third, we deliberately focus on epistemic rather than normative considerations, leaving
important questions about the ethical obligations and social responsibilities of XAl unexplored (see
Appendices and for relevant normative discussions). Finally, whilst we introduce the concept
of "bounded factivity," we remain at the philosophical level without operationalising it into mea-
surable criteria. Though Wei et al.| [2024] demonstrate fine-grained metrics for evaluating post-hoc
method robustness, translating such approaches to scientific contexts remains unclear (add Friesleban).
What constitutes sufficient "bounds" for scientific practice? How do we measure faithfulness when
the goal is phenomenal understanding rather than model fidelity? Our focus was establishing how
post-hoc methods can be philosophically justified within scientific practices; developing empirical
measures and concrete desiderata informed by philosophy of science represents an important but
separate endeavour for future work.

Attempts to interpret Al models, particularly through post-hoc methods, bear a meaningful re-
semblance to the way human experts articulate their intuitive judgements. Much like post-hoc
rationalisations offered by human specialists — who often cannot access the full breadth of their
internalised cognitive processes—these Al explanations seek to render comprehensible the dense,
layered computations embedded in modern models [Newell and Simon}|1972||Simon and Chasel, 1973
Gobet and Clarkson, [2004]. This parallel highlights not only the approximative nature of both forms
of explanation but also a critical distinction: unlike the human mind, Al systems permit systematic
interrogation of their internal states. This accessibility allows for more transparent bounds on factivity
and the possibility of empirical validation—advantages that position post-hoc explainability as a
potentially more rigorous and inspectable form of interpretation than human expertise affords. In
this view, post-hoc methods are not peripheral conveniences but central instruments in the pursuit of
scientific insight from ML systems. While their approximative nature imposes limits, these limits are



not disqualifying — provided they are acknowledged, bounded, and subjected to empirical scrutiny.
Post-hoc explainability, when properly constrained and philosophically grounded, can be an effective
conduit for phenomenal understanding within scientific practice.
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A Conceptual Comparison of Intrinsic and Post-hoc Interpretability Models

f(X)

Learning Path

Human Comprehensibility

(a) Intrinsically interpretable models constrain the
hypothesis space H to human-comprehensible func-
tion classes (e.g., linear models, decision trees). The
learned model A" (X) approximates the phenomenon
f(X) whilst remaining directly interpretable by de-
sign.

f(X)

~

%

_ 4=—t——

Learning Path === Human Comprehensibility

(b) Post-hoc explainability allows models to be learned
from an unconstrained hypothesis space H, poten-
tially capturing complex patterns through h*(X). A
separate explanation function p* (X)) is then derived
(e.g., via LIME, SHAP) to approximate and interpret
h*(X)’s behaviour in human-understandable terms.

Figure 1: Comparison of intrinsic and post-hoc interpretability models.
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B Framework for Scientific Knowledge Generation through Post-hoc
Methods

Figure 2: Framework for Scientific Knowledge Generation through Post-hoc Methods. The diagram
illustrates the cyclic process of generating scientific understanding from ML models through post-hoc
interpretability methods. Each component shows both the theoretical principle (dark grey boxes) and
its practical application in T2D research (light grey boxes). The process begins with translation of
model behaviour, progresses through method selection and hypothesis generation, and culminates in
empirical validation through instrumental and theoretical refinement. Green elements represent the
key stages in the knowledge generation pipeline. Arrows indicate the flow and interactions between
components, demonstrating how post-hoc methods mediate between model behaviour and scientific
understanding.
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C Relevant Philosophical discussions on Al and Interpretability

C.1 |Sullivan’s (2022) Link Uncertainty

According to Sullivan, the relationship between explanation and understanding in complex models
hinges critically on the concept of "link uncertainty" — the gap between a model’s theoretical predic-
tions and empirical reality. Sullivan argues that while models can be epistemically opaque (meaning
their internal workings are not fully transparent), this opacity does not necessarily prevent them
from providing genuine understanding, provided there is sufficient empirical evidence connecting
the model to real-world phenomena. In other words, we do not necessarily need to fully understand
how a model works internally; what matters more is understanding how the model connects to the
real-world system it is studying.

Sullivan identifies three distinct types of explanatory questions we can ask about models: how the
model itself works, how-possibly questions about potential mechanisms, and why/how-actually ques-
tions about real-world phenomena. How-possibly explanations demonstrate potential mechanisms or
causes, showing how something could theoretically occur. However, these fall short of explaining how
things actually work in reality. Using Schelling’s segregation model as an example, Sullivan shows
that while the model can demonstrate how segregation could emerge from individual preferences,
it only provides genuine understanding if there is empirical evidence showing these mechanisms
actually operate in real-world segregation patterns.

The decisive factor in moving from how-possibly to how-actually explanations is reducing link
uncertainty through scientific evidence. This evidence must connect the model’s theoretical insights to
actual causal mechanisms in the target phenomenon. Importantly, Sullivan argues that understanding
does not necessarily require complete knowledge of how a model works internally. Instead, what
matters is the strength — whether it be the amount, kind or quality — of scientific and empirical
evidence connecting the model’s predictions or insights to real-world phenomena.

C.2 |Andrews' (2023) Theory-ladenness of Machine Learning

The debate over Machine Learning’s impact on science has generated what scholars call the "distinct-
ness claim". The claim’s core argument — articulated by several philosophers like Boge, Sreckovic
et al., and Boon — is that ML, particularly deep learning, represents a fundamental departure from
traditional scientific methods. They primarily base this on two key distinctions: (1) ML methods are
supposedly "theory-free" or "theory-agnostic", operating without prior theoretical assumptions or
conceptualisations of target phenomena, and (2) ML models prioritise prediction over explanation
and understanding, making them epistemically opaque in novel ways. This perspective has gained
significant traction not only in philosophical discourse but also among scientists and engineers who
view ML as fundamentally different from traditional scientific approaches.

Extending Leonelli, Andrews fundamentally challenges this perspective with the theory-laden nature
of scientific data and practice:

Even the most simplistic of experimental designs reveals the nature and extent

to which data, and scientific practice at large, are "theory-laden.” The very act of
investigation involves commitment to the existence and in-principle measurability
of some phenomenon and, if we are making measurements and performing quanti-
tative analyses thereon, commitment to its quantitative nature...
Measurement cannot be total, and therefore there is always a commitment as to
what to look at experimentally and what to exclude. There is always a commitment
to the appropriate level of abstraction at which to study the phenomenon in play
in terms of such things as instrument settings like degree of magnification or pe-
riodicity of sampling. The very design of our instruments of measure and their
calibration includes various commitments to the nature of the worldly phenomena
under investigation. [Andrews| [2023| pp. 6]

This understanding of data’s theory-laden nature is now widely accepted in philosophy of science.
However, as Leonelli notes, unfortunate relics of this view — viewing data as mere ’empirical input
for modelling’ — remain widespread. This persistent misconception underlies many arguments about
ML’s theory-free nature. The reality is that all scientific data, whether used in traditional methods
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or ML, necessarily involves theoretical assumptions and conceptual frameworks in its collection,
preparation, and interpretation. This view challenges the technological determinism implicit in many
discussions of ML in science — the belief that certain effects or limitations of ML are fixed, inevitable
consequences of the technology itself. Rather than accepting current limitations as inherent features,
Andrews argues we should recognise them as methodological challenges that can be addressed
through improved practices and understanding.

Building on this theoretical foundation, Andrews demonstrates how the impossibility of "theory-free"
learning is established by both philosophy of science and theoretical computer science’s understanding
of inductive generalisation. At its core, machine learning performs inductive inference - extrapolating
from limited instances to general cases. Drawing on Norton’s material theory of induction, Andrews
notes that successful inductive inference never proceeds through universal, domain-generic formal
rules, but rather requires the application of local rules warranted by empirical facts specific to each
research domain. This philosophical insight finds independent confirmation in computer science
through the No Free Lunch theorems, which mathematically demonstrate the impossibility of universal
domain-generic inference rules. While these theorems were derived in specific formal settings, their
implications for ML practice are profound: inductive inference fundamentally requires domain-
specific inductive biases. This convergence of philosophical and mathematical results undermines
claims about ML’s theory-independence.

These insights reveal the "distinctness claim" as fundamentally misguided. Rather than representing
a revolutionary break from traditional scientific methods, ML should be understood as a new set of
tools whose proper application still requires theoretical understanding and methodological rigour.
This perspective suggests a more nuanced approach to ML in science: one that acknowledges how
theoretical considerations may enter differently in ML workflows, while recognising their essential
role in ensuring sound scientific practice. Such an understanding is crucial for developing appropriate
methodological standards for ML in science, rather than accepting current limitations as inevitable
features of the technology.

C.3 |Beisbart and Riz’s (2022) Factivity Dilemma

The factivity dilemma in understanding Deep Neural Networks (DNNs) centers on a fundamental
tension between accuracy and comprehensibility. The principle of factivity demands that explanations
and understanding be grounded in facts, yet modern DNNs have become so complex that we can only
comprehend them through simplifications and idealisations. As Rudin (2019) pointedly argues, a
perfectly accurate explanation would simply duplicate the original model’s complexity, defeating the
purpose of explanation. This creates what appears to be an insurmountable challenge: explanations
must either sacrifice accuracy for comprehensibility or maintain accuracy at the cost of being unusable.

This tension has deep roots in the philosophy of science, particularly in debates about the relationship
between explanation and understanding. Traditional accounts of scientific explanation, such as the
Deductive-Nomological model, typically require factivity - the premises in an explanation must
be true. However, the requirements for scientific understanding are more nuanced. Non-factivists
like Elgin argue that simplified models can provide legitimate understanding despite imperfect
accuracy, while factivists such as Lawler maintain that simplifications are merely instruments toward
understanding rather than constituting understanding itself. These opposing views reflect a broader
debate about whether understanding necessarily requires truth or can be achieved through useful
approximations.

A potential resolution emerges when we distinguish between mechanistic interpretability and sci-
entific understanding in the context of DNNs. While mechanistic interpretability aims for factual
explanations of model behaviour, scientific understanding of phenomena through post-hoc interpreta-
tive models may not require the same level of factivity. This distinction suggests that while complete,
accurate explanations remain an important goal, we can develop meaningful understanding through
carefully constructed simplified models. The key lies in maintaining awareness of these models’
limitations while leveraging their insights - acknowledging them as useful approximations rather than
complete representations of reality. This approach offers a practical way forward, recognising both
the current constraints in explaining DNNs and the necessity of working with these systems, even
with imperfect understanding.
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C.4 |Freiesleben et al.’s (2024) Holistic Representationality

Freiesleben et al. address a fundamental challenge in modern scientific research: how to derive mean-
ingful scientific insights from machine learning models that, unlike traditional scientific models, lack
direct interpretability of their components. Traditional scientific models followed what the authors
call "elementwise representationality" (ER), where each model component — whether parameters,
variables, or relationships — directly represented something meaningful about the phenomenon being
studied. For instance, in a simple physics model, mass and velocity parameters directly correspond to
physical properties. However, modern ML models, particularly neural networks, do not offer this
kind of straightforward interpretation - their individual components (like network weights) do not
map clearly to real-world phenomena (e.g., see Freiesleben| [2023]).

Rather than viewing this as a limitation, the authors propose a framework based on "holistic repre-
sentationality" (HR). Instead of trying to interpret individual components, they suggest analysing
the model’s behaviour as a whole through what they call "property descriptors" (e.g., cPDP, cFI,
SAGE, and PRIM for global property, and ICE, ¢SV, ICI and Counterfactuals for local property, see
pp-21-25 for further details). This approach aligns with recent findings from |Bilodeau et al.| [2024]],
who demonstrate that generic feature attribution methods can be unreliable for inferring model
behaviour, but task-specific approaches can dramatically improve interpretability. While Freiesleben
et al. provide a theoretical framework, Bilodeau et al. offer practical evidence of its importance,
showing how domain-specific interpretability methods (e.g., perturbation) can be more reliable than
general-purpose approaches like SHAP or Integrated Gradients.

The authors provide a systematic four-step framework for this approach (pp. 14-20): first, formalising
the scientific question as a statistical query, which involves translating research questions into precise
mathematical formulations; second, identifying how to answer it using the whole model through
property descriptors that are continuous functions mapping from model space to answer space;
third, estimating the answer using the trained model, which requires careful consideration of data
distribution and model behavior; and fourth, quantifying the uncertainty in the results through
both model error (difference between optimal and trained model predictions) and estimation error
(uncertainty in the property descriptor estimates themselves). This framework is particularly notable
for its rigorous treatment of uncertainty quantification, which is often overlooked in traditional
interpretable ML approaches.

The paper demonstrates the practical applicability of this framework by showing how existing
interpretable ML methods can serve as property descriptors. Using a concrete example of analysing
student academic performance, they illustrate how these methods can provide scientifically meaningful
insights while maintaining rigorous standards of inference. The authors emphasise that while this
approach differs from traditional scientific modelling, it does not sacrifice scientific rigour — it simply
provides a different path to extracting knowledge from our models, one that’s better suited to the
capabilities and limitations of modern machine learning systems. This conclusion resonates with
Bilodeau et al.’s findings that success in model interpretation often depends on carefully defining
concrete end-tasks and developing targeted evaluation methods rather than relying on general-purpose
interpretation tools.

C.5 |Lazar's (2024) Democratic Duties of Explanation

Lazar’s central contribution to Al explainability discourse stems from his recognition that computa-
tional systems, especially Al, are increasingly being used to "govern" us — that is, to settle, implement,
and enforce the norms that determine how institutions function. When computational systems are
deployed by government agencies in administrative functions or by private companies to police
online behaviour and determine our information access, they are effectively governing us. For such
governing power to be legitimate, Lazar argues, it must be accountable to democratic oversight
through public explanation to the community as a whole. Unlike approaches focused on individual
rights or technical transparency, Lazar emphasises that explainability is fundamentally a democratic
duty — it is not about individual decision subjects understanding their particular outcomes, but about
enabling the collective community to determine whether these computational governance systems
are being used legitimately and with proper authority. Lazar argues that this collective explainability
requirement has specific implications for computational governance systems: they must reveal not
just their decision rules, but also demonstrate the appropriateness of their training data as evidence,
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the robustness of their decision-making processes, and their ability to make the right decisions for the
right reasons.

C.6 |Vredenburgh's (2022) Informed Self-advocacy

Vredenburgh’s central contribution addresses the fundamental tension between algorithmic opacity
and individual rights. Rather than demanding complete technical transparency of complex Al models,
she argues for a claim right to explanations that can be provided post-hoc, grounded in what she calls
"informed self-advocacy" — a cluster of abilities that allows individuals to represent their interests
and values to decision-makers and further those interests within institutions. This right becomes
particularly crucial in institutions where algorithmic decisions significantly impact individuals’ lives.

Vredenburgh argues that post-hoc explanations must take two specific forms: rule-based norma-
tive explanations (explaining why a decision was appropriate) and rule-based causal explanations
(explaining how inputs relate to outputs). She advocates for "functional transparency" — high-level
explanations of how inputs relate to outputs — rather than structural or run transparency of the under-
lying model (pp. 13). While acknowledging that simplified explanations of complex algorithms may
be somewhat inaccurate, she argues they can still be sufficient for informed self-advocacy if properly
calibrated to stakes: when decisions distribute harms or entitlements (versus benefits), there are
stronger requirements for clear explanations and human expert support. This pragmatic framework
shows how post-hoc explanations, even if they do not fully capture the complexity of Al systems, can
satisfy legitimate needs for accountability while remaining feasibly implementable, as evidenced by
existing legal requirements for explanation across various domains.

C.7 Duran/s (2023) Computational Realibilism

The central motivation of justification in DNNS is primarily driven by their inherent methodological
and epistemic opacity [Humphreys|, [2009]. This opacity manifests in two distinct yet interrelated
ways [Duran, [2023]]. First, the algorithmic complexity of DNN systems — encompassing myriad
functions, variables, decisions, and data — renders it impossible for any individual or group to fully
comprehend which elements are pivotal in generating a specific output. Second, this complexity
imposes cognitive limitations on human agents, hindering our ability to derive meaningful interpreta-
tions of the algorithm and its results. Both aspects of opacity potentially undermine the justificatory
basis for ascribing scientific value to DNN outputs, either due to the "black-box" nature of the system
or the cognitive constraints of human interpreters.

Duran’s computational reliabilism (CR) addresses this epistemic challenge by proposing a framework
for justifying belief in DNN outputs if and when they are produced by reliable belief-forming methods
[Duran and Formanek, 2018, |Duran, 2023| Javed et al., 2023]. CR delineates three categories of relia-
bility indicators: (i) Technical Robustness of Algorithms, encompassing the design, implementation,
and maintenance factors that contribute to a DNN system’s robustness; (i) Computer-based Scientific
Practice, which involves the algorithmic implementation of scientific theories and principles, or
expert assessment within established scientific knowledge; and (iii) Social Construction of Reliability,
referring to the socially mediated processes that confer acceptance of DNN and its outputs across
diverse communities. At its core, CR adopts a frequentist approach, positing that beliefs formed by
demonstrably reliable algorithms warrant greater justification than those produced by unreliable ones.
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