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Abstract

Test-time reasoning architectures such as those following the Generate–Verify
paradigm – where a model iteratively refines or verifies its own generated outputs
– prioritise generation and verification, but exclude the monitoring processes that
determine when and how reasoning should begin. This omission may contribute to
the prefix dominance trap, in which models commit early to suboptimal reasoning
paths and seldom recover, yielding roughly 20% accuracy loss. We address this
architectural gap by formalising Flavell’s and Nelson and Narens’ metacognitive
theories into computational specifications, proposing the Monitor–Generate–Verify
(MGV) framework. MGV extends the Generate–Verify paradigm by adding explicit
monitoring that captures metacognitive experiences (from difficulty assessments
to confidence judgements) before generation begins and refines future monitor-
ing through verification feedback. Though we present no empirical validation,
this work provides the first systematic computational translation of foundational
metacognitive theories, offering a principled vocabulary for understanding reason-
ing system failures and suggesting specific architectural interventions for future
test-time reasoning designs.

1 Introduction

Once language models commit to an initial reasoning strategy, subsequent verification rarely helps;
this prefix dominance trap causes nearly 20% performance degradation when models choose subopti-
mal approaches, with virtually no recovery possible through refinement [Luo et al., 2025]. Today’s
dominant Generate-Verify (G-V) test-time reasoning architectures [Weng et al., 2023, Madaan et al.,
2023, Lee et al., 2025, Zhang et al., 2024] exemplify this limitation through their very design.
They operate through immediate generation followed by iterative refinement, without assessing task
characteristics or selecting appropriate strategies before generating solutions.

Yet, this paradigm omits an implicit phase present in human cognition, where metacognitive monitor-
ing precedes action. Before attempting complex tasks, humans – often without conscious deliberation
– assess difficulty, retrieve relevant strategies, and establish confidence criteria [Flavell, 1979, Nelson
and Narens, 1990]. This metacognitive capacity operates by transforming world-centred uncertainty
into self-centred propositional confidence, enabling both prospective planning and retrospective
evaluation through mechanisms including global broadcast and post-decisional evidence accumu-
lation [Fleming, 2024]. Current reasoning architectures – whether Self-Verification [Weng et al.,
2023] validating through backward verification of conclusions, SELF-REFINE [Madaan et al., 2023]
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improving through iterative feedback and refinement, or ReVISE [Lee et al., 2025] rethinking trajec-
tories through intrinsic self-verification – lack these pre-generation assessment mechanisms, blindly
committing to initial approaches that determine ultimate success or failure.

Although the Generate-Verify paradigm successfully mirrors Generation-Recognition models of
memory recall [Bahrick, 1970, Kintsch, 1978], capturing how retrieval involves generation followed
by recognition-based evaluation, these models specify only the mechanics of recall (object-level
mechanics) – lacking the metacognitive control and monitoring that determines when and how these
mechanics should be deployed (meta-level).

Cognitive psychology shows that successful task completion requires precisely such meta-level gover-
nance through monitoring task difficulty, selecting strategies, and deciding when to persist or abandon
approaches [Flavell, 1979, Nelson and Narens, 1990]. Flavell [1979] demonstrated that cognitive
regulation emerges from dynamic interactions between metacognitive knowledge (beliefs about
cognitive capabilities, task demands, and strategy effectiveness), metacognitive experiences (feelings
of difficulty and comprehension), goals and strategies, with monitoring necessarily preceding action
to enable appropriate strategy selection. Nelson and Narens [1990] further specified the hierarchical
architecture of metacognition, distinguishing object-level processes from meta-level oversight that
operates through control and monitoring flows. Their framework reveals how metacognitive experi-
ences (Feeling of Knowing, Judgements of Learning) guide immediate decisions, with confidence
thresholds dynamically adjusting through satisficing to balance accuracy against search costs.

Informed by these cognitive science foundations, we develop algorithmic formalisations that translate
psychological theories into computational specifications suitable for reasoning systems. We formalise
Flavell’s cognitive monitoring model and Nelson and Narens’ metamemory frameworks, translating
them into computational algorithms to develop Monitor-Generate-Verify (MGV), a framework
where explicit metacognitive monitoring precedes generation. Our formalisations translate abstract
psychological constructs into algorithmic structures, highlighting gaps between human cognitive
capabilities and current reasoning architectures.

The remainder of this paper is organised as follows: Section 2 situates our contribution within current
reasoning architectures and partial metacognitive implementations. Section 3 presents algorithmic
formalisations of Flavell’s and Nelson and Narens’ theories, translating psychological concepts into
computational structures – to our knowledge, the first systematic translation of these foundational
theories into computational specifications. Section 4 demonstrates how these formalisations explain
specific failures and suggest architectural improvements. Section 5 acknowledges implementation
challenges, before Section 6 synthesises contributions and future directions.

2 Related Work

2.1 Metacognitive Capabilities in Language Models

Recent research explores metacognitive capabilities in LLMs through behavioural and neural analysis.
Behavioural studies examine how models express uncertainty through confidence verbalisation [Wang
et al., 2025, Tian et al., 2023, Xiong et al., 2023, Cash et al., 2024, Griot et al., 2025]. Yet implicit
confidence measures derived from token likelihoods demonstrate greater metacognitive sensitivity
than explicitly prompted confidence statements [Xiong et al., 2023]. This discrepancy between
internal representation and external expression indicates that models access metacognitive signals
they cannot adequately articulate – Lindsey et al. [2025] demonstrate that while Claude-3.5-Haiku
accurately reports intermediate computational steps, it fabricates non-existent processes when queried
about simple addition, despite correctly activating relevant neural mechanisms.

Direct neural analysis yields more substantive findings. Ji-An et al. [2025] identify a “metacogni-
tive space” of lower dimensionality than models’ full neural space, indicating that LLMs monitor
compressed representations rather than complete computational states. This observation aligns with
established cognitive findings that metacognitive monitoring operates on abstracted representations
[Reder, 1987]. Furthermore, metacognitive signals such as confidence correspond to linearly sep-
arable directions in representation space [Zou et al., 2023, Liu et al., 2023], suggesting structured
organisation of these internal monitoring capabilities.
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2.2 Theoretical Foundations Gap

Despite the behavioural and neural evidence demonstrating LLM access to metacognitive signals –
confidence representations, capability awareness, compressed monitoring spaces – such capabilities
remain architecturally isolated. The distinction between signal detection and systematic control mani-
fests in reasoning failures. Models experiencing the prefix dominance trap fail to revise suboptimal
strategies [Luo et al., 2025], indicating that any metacognitive signals about task difficulty or strategy
inadequacy remain functionally isolated from generation control.

The absence of systematic control architectures reflects a broader theoretical gap. Contemporary
implementations incorporate metacognitive components as discrete modules rather than integrated
systems. This fragmentation precludes the coordinated monitoring-control loops that Flavell identifies
as necessary for strategy selection, and the hierarchical meta-level governance that Nelson and Narens
demonstrate underlies successful cognitive regulation.

However, these psychological specifications lack computational translations. No principled frame-
work exists for implementing such metacognitive architectures in artificial systems. This theoretical
gap constrains both our understanding of reasoning failures and our capacity to develop systematic
solutions. Without formal mappings from cognitive principles to algorithmic structures, implemen-
tations remain ad hoc, adopting surface features of metacognition while omitting the functional
relationships that enable effective cognitive control.

Our contribution addresses this gap by providing algorithmic formalisations of established metacog-
nitive theories. These formalisations preserve the functional dependencies identified in cognitive
science while specifying implementation requirements for computational systems, thereby establish-
ing theoretical foundations for metacognitive reasoning architectures.

3 Monitor-Generate-Verify (MGV)

Flavell [1979] and Nelson and Narens [1990] developed seminal theories of how metacognition
coordinates cognitive processes through monitoring and control loops. These frameworks, though
developed for human cognition, offer potential blueprints for computational systems. Flavell’s model
provides a dynamic architecture where metacognitive knowledge and experience guide strategy selec-
tion and verification, while Nelson and Narens’ metamemory framework specifies how confidence
thresholds and adaptive search mechanisms emerge from hierarchical monitoring and control. By com-
putationally formalising these psychological theories, we establish Monitor-Generate-Verify (MGV)
as a theoretical framework for understanding how explicit metacognitive mechanisms could address
the architectural limitations of current reasoning systems. The following subsections present detailed
formalisations that translate these cognitive science insights into algorithmic structures, revealing
both what current architectures lack and how metacognitive principles might be operationalised
computationally.

3.1 Flavell’s Model of Metacognition

Flavell [1979] conceptualises metacognition as a dynamic control architecture comprising four
interacting components: metacognitive knowledge, metacognitive experience, goals (or tasks), and
actions (or strategies). Rather than operating as independent modules, these components form an
integrated system characterised by continuous bidirectional influences, positioning metacognition as
a self-regulating system capable of adaptive control over cognitive processes. We present the core
computational structure below, with a complete mathematical formalisation provided in Appendix A.

3.1.1 Cognitive Monitoring

The regulation process begins with initialisation, where task T and goal G establish the initial state
S0 = f(T ,G). While Flavell [1979] treats goals and tasks as equivalent, we maintain a computational
distinction. T represents the cognitive enterprise while G specifies success criteria, enabling clearer
analysis of metacognitive processes.

The monitoring phase activates metacognitive knowledge differently across cycles. Initial cycles
rely solely on task-goal combinations, while subsequent cycles incorporate emerging metacognitive
experiences from τ − 1 that trigger additional relevant knowledge. According to Flavell [1979], this
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Algorithm 1 Flavell’s Metacognitive Regulation
1: Initialise: S0 ← f(T ,G); τ ← 0
2: while Sτ = ACTIVE do
3: // MONITOR: Retrieve knowledge & assess experience
4: MKτ ← if τ = 0 then retrieve(MK, T ,G)
5: elseMKτ−1∪ retrieve(MK,MEτ−1)
6: MEτdifficulty ← feel(T , Outcomesτ−1) ⊕ assess(T ,MKτ )
7: // GENERATE: Select & execute cognitive strategy
8: CSτ ← select(s ∈MKStrategy | MEτdifficulty,MKτ , T ,G)
9: COτ ← execute(CSτ , T ,G)

10: // VERIFY: Evaluate progress & update knowledge
11: MEτevaluative ← assess(COτ ,MKτ )
12: MSτ ← select(s ∈MKmeta

Strategy | ME
τ
evaluative)

13: MOτ ← execute(MSτ , COτ ,MKτ ,G)
14: MK← update(MK, Φτ ) where Φτ = (MEτ , Strategyτ ,Outcomeτ )
15: Sτ+1 ← if goal_achieved(COτ ,G) then TERMINATE else ACTIVE
16: τ ← τ + 1
17: end while

knowledge comprises three categories: agent variables (MKAgent) representing learned self-models
of performance patterns and processing preferences; task variables (MKTask) capturing knowledge
about cognitive situation assessment including information characteristics and task demands; and
strategy variables (MKStrategy) encompassing knowledge about the effectiveness of both cognitive
strategies (problem-solving procedures) and metacognitive strategies (monitoring and regulation
processes). These categories function as an integrated system where task variables diagnose cognitive
demands, strategy variables prescribe responses, and agent variables contextualise both within the
agent’s capabilities.

The monitoring phase also generates metacognitive experiences of difficulty (MEτdifficulty), which
Flavell [1979, p. 909] describes as subjective feelings of complexity, comprehension challenges,
or sensing that material exceeds current capabilities. These experiences evolve through iterative
assessments, progressing from initial coarse feelings to increasingly nuanced evaluations of specific
challenge sources.

During the generation phase, metacognitive experiences function as computational signals that
require interpretation through metacognitive knowledge to guide strategy selection. The process
follows a two-phase pattern. First, MKStrategy transforms general difficulty signals into precise
diagnostic patterns (e.g., “content uncertainty with unknown terms” or “procedural confusion from
missing steps”). Second, these refined patterns activate corresponding cognitive strategies. The
selected strategy CSτ is then executed to produce cognitive outcomes COτ , generating feedback that
provides both task progress information and context for subsequent monitoring.

The verification phase evaluates these outcomes, triggering what Flavell [1979, p. 909] describes
as additional metacognitive experiences about performance rather than difficulty. These evaluative
experiences (MEτevaluative) activate metacognitive strategies that assess whether outcomes form a
coherent whole, appear plausible and consistent with prior knowledge, and provide an avenue to
the goal. The specific metacognitive strategyMSτ selected depends on the nature of the evaluative
signal: uncertainty about validity triggers plausibility checking, sensing incompleteness activates
coherence assessment, and so forth. Notably, these experiences can add to, delete from, or revise
the metacognitive knowledge base through Piagetian mechanisms [Flavell, 1963], with the complete
experience tuple Φτ updatingMK for future cycles.

3.1.2 Memory and Learning Gaps

A significant limitation in Flavell’s model is the absence of explicit working memory mechanisms
for storing information across monitoring cycles. The model does not specify whereMEτdifficulty
resides during strategy execution, how COτ is maintained during evaluation, or how experience
patterns across cycles are retained for subsequent processing. This absence precludes sophisticated
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termination criteria that would require access to historical monitoring data across the complete
sequence Φ = (Φ0,Φ1, . . . ,ΦT ).

With an explicit memory component, the model could implement comprehensive abandonment
criteria that evaluate: (1) repeated strategy failures indicated by consistently negativeMOτ across
multiple cycles, suggesting task intractability; (2) resource constraints where cumulative effort across
Φ0 to Φτ exceeds acceptable limits relative to MKAgent; (3) goal displacement where evolving
MEτevaluative signals that alternative objectives have become more salient than the original G; and
(4) insurmountable goal-state discrepancy where the pattern of COτ outcomes reveals fundamental
incompatibility with G achievement.

A related temporal limitation concerns metacognitive knowledge acquisition and refinement. While
Flavell acknowledges that experiences can ‘add to’, ‘delete from’, or ‘revise’ the knowledge base,
the model assumes pre-existingMK without specifying learning mechanisms – how unsuccessful
strategies refine strategy knowledge, or how repeated encounters improve task assessments.

Such memory-dependent termination decisions and learning-dependent knowledge refinement would
better reflect real-world metacognitive monitoring, where individuals track cumulative progress
patterns and recognise when persistence becomes counterproductive, while simultaneously refining
their metacognitive knowledge through experience. These limitations point towards the necessity for
more sophisticated architectural frameworks that explicitly model the temporal dynamics of metacog-
nitive information storage and retrieval as well as the acquisition and refinement of metacognitive
knowledge – considerations that become central to Nelson and Narens’ metamemory architecture.

3.2 Nelson and Narens’ Model of Metamemory

Nelson and Narens [1990] establish metacognition as fundamentally hierarchical, distinguishing
between object-level processes that operate on mental content and meta-level processes that operate
on cognitive processes themselves. The meta-level maintains a dynamic internal representation
of the object-level, enabling self-regulation through two distinct information flows: control (meta-
level→ object-level) and monitoring (object-level→ meta-level). These relationships are logically
independent and asymmetric – the meta-level maintains a model of the object-level while the object-
level operates without corresponding meta-level representation. We present the core computational
structure below, with complete mathematical formalisation provided in Appendix B.

3.2.1 Acquisition Process

The acquisition process begins with establishing the norm of study Ns = ρ∗ × (1 + δretention), where
ρ∗ represents target performance and δretention captures beliefs about memory decay over interval τdelay.
This operationalises abstract goals into quantified mastery criteria that anticipate forgetting. Following
Ericsson and Simon [1984], monitoring occurs within working memory (STM), with information
from long-term memory (LTM) accessed probabilistically via retrieveθ(·) where θ represents access
probability [Atkinson and Shiffrin, 1968].

The monitoring phase generates metacognitive experiences as multidimensional vectors. Ease of
Learning (EOL) provides initial difficulty assessment, while Feeling of Knowing (FOK) incorporates
prior outcomes to refine mastery judgements. These phenomenological experiences serve as primary
input for control decisions [Nelson and Narens, 1990, p. 160]. During the generation phase, resource
allocation operates inversely to EOL/FOK values – items with lower metacognitive confidence receive
proportionally more resources rτ,j = Rtotal × wj/

∑
k wk where wj = (MEτ,j [1])−1. Strategy

selection integrates these metacognitive inputs to map appropriate learning methods to individual
items.

The verification phase employs Judgements of Learning (JOL) to evaluate mastery following cog-
nitive outcomes. Items achieving the norm of study (JOLτ,j ≥ Ns) are removed from further
consideration, whilst those below threshold remain in Jτ+1 for continued learning. The complete
experience tuple accumulates in working memory as ΦSTM

τ , subsequently undergoing consolidation
to LTM at encoding rate ψ.
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Algorithm 2 Nelson and Narens: Acquisition

1: Initialise:MKSTM
0 ← retrieveθ(MK, T ,G)

2: Ns ← ρ∗ × (1+ formulate(MKSTM
0 , τdelay, T ,G))

3: J0 ← {1, . . . , N}; τ ← 1; ΦSTM
0 ← ∅

4: while Jτ ̸= ∅ do
5: // MONITOR: Assess mastery via EOL/FOK
6: MKSTM

τ ←MKSTM
τ−1∪ retrieveθ(MK,MEτ−1)

7: for each j ∈ Jτ do
8: MEτ,j [1]← if τ = 1 then EOL(ij) else FOK(ij , COτ−1,j)
9: end for

10: // GENERATE: Allocate resources & select strategies
11: for each j ∈ Jτ do
12: rτ,j ← Rtotal × (MEτ,j [1])−1/

∑
k(MEτ,k[1])−1

13: στ,j ← select(s ∈MKStrategy | ij , rτ,j ,MEτ,j)
14: COτ,j ← execute(ij , rτ,j , στ,j)
15: end for
16: // VERIFY: Judge learning & update items
17: for each j ∈ Jτ do
18: JOLτ,j ← feel(ij , COτ,j)⊕ assess(ij , COτ,j ,MKSTM

τ )
19: MEτ,j [2]← JOLτ,j
20: ΦSTM

τ ← ΦSTM
τ ∪ {(MEτ,j , ij , rτ,j , στ,j , COτ,j)}

21: end for
22: Jτ+1 ← {j ∈ Jτ : Ns − JOLτ,j > 0}; τ ← τ + 1
23: end while
24: MK← consolidateψ(MK,ΦSTM

τ ) ▷ Experience to LTM

3.2.2 Retrieval Process

The retrieval process implements Nelson and Narens’ dual-counter FOK hypothesis, where FOK+

accumulates evidence for information presence whilst FOK− accumulates evidence for absence,
consistent with ‘knowing not’ [Kolers and Palef, 1976]. Initial thresholds are personalised through
metacognitive calibration history: λ(0)FOK = median({||FOK|| : successful retrievals inMKSTM

0 })
and λ

(0)
confidence = median({confidence : correct outputs inMKSTM

0 }), embodying the No-Magic
Hypothesis by utilising recallable metacognitive knowledge.

The monitoring phase employs rapid FOK assessment that operates faster than actual recall
[Reder, 1987], enabling efficient search control. When FOK magnitude falls below threshold
(||FOKτ || < λ

(τ)
FOK), insufficient evidence triggers intensive cue attention to gather additional metacog-

nitive information. With sufficient evidence, positive dominance (FOK+
τ > FOK−

τ ) warrants contin-
ued search, while negative dominance justifies termination.

The generation phase reflects Nelson and Narens’ insight that search execution is automatic once
initiated – conscious control operates through cue attention intensity rather than strategy selection.
The automatic search process searchauto(cueτ ) operates through pattern recognition, potentially
yielding identical results across consecutive cycles due to its deterministic nature.

Verification distinguishes two error pathways: commission errors (outputting incorrect answers with
high confidence) and omission errors (terminating without answers following prolonged search).
Following satisficing principles [Simon, 1979], both confidence and FOK thresholds undergo dynamic
adjustment: λ(τ+1) = λ(0) · βτ where βτ = exp(−α · burden) captures accumulating search costs.
This ensures previously inadequate answers may become acceptable as search burden increases,
preventing exhaustive search behaviour.

3.2.3 Memory Consolidation and Knowledge Evolution

A distinctive strength of Nelson and Narens’ framework lies in its explicit treatment of long-term
memory (LTM) as both a repository and an evolving knowledge base. During acquisition and retrieval,
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Algorithm 3 Nelson and Narens: Retrieval

1: Initialise:MKSTM
0 ← retrieveθ(MK,Q)

2: λ(0)FOK, λ
(0)
confidence ← calibrate(MKSTM

0 ); τ ← 0; ΩSTM
0 ← ∅

3: while search active do
4: // MONITOR: Assess dual-counter FOK
5: MKSTM

τ ←MKSTM
τ−1∪ retrieveθ(MK, FOKτ−1) if τ > 0

6: [FOK+
τ , FOK−

τ ]← feel(Q,Aτ−1)⊕ assess(Q,Aτ−1,MKSTM
τ )

7: // Determine search intensity based on FOK evidence
8: if ||FOKτ || < λ

(τ)
FOK then

9: Sτ ← ACTIVEintensive ▷ Insufficient evidence
10: else if FOK+

τ > FOK−
τ then

11: Sτ ← ACTIVEstandard ▷ Positive dominance
12: else
13: break ▷ Negative dominance: terminate
14: end if
15: // GENERATE: Attend to cues & automatic search
16: cueτ ← attend[intensive/standard](Q,MKSTM

τ ) based on Sτ
17: Aτ ← searchauto(cueτ ) ▷ Automatic pattern recognition
18: // VERIFY: Evaluate answer & adjust thresholds
19: confidenceτ ← assess(Aτ ,Q,MKSTM

τ ) if Aτ ̸= null
20: if Aτ ̸= null ∧ confidenceτ ≥ λ(τ)confidence then
21: output Aτ ; break
22: else if Aτ = null ∧FOK−

τ > FOK+
τ then

23: output null; break ▷ Omission
24: end if
25: ΩSTM

τ ← ΩSTM
τ ∪ {(FOKτ , cueτ ,Aτ , confidenceτ )}

26: βτ ← exp(−α · (τ + |{failed attempts in ΩSTM
τ }|))

27: λ
(τ+1)
confidence, λ

(τ+1)
FOK ← λ(0) · βτ ▷ Satisficing

28: τ ← τ + 1
29: end while
30: MK← consolidateψ(MK,ΩSTM

τ ) ▷ Experience to LTM

the experience tuples accumulated in working memory (ΩSTM
T ) undergoes consolidation into LTM at

encoding rate ψ:

While Nelson and Narens do not explicitly specify the timing of this consolidation process, it likely
occurs during the verification stage at rate ψ, potentially operating below conscious awareness.
This consolidation mechanism enables the global metacognitive knowledge base to evolve through
accumulated experience, distinguishing Nelson and Narens’ approach from more static metacogni-
tive frameworks. The probabilistic retrieval function retrieveθ(MK, ·) subsequently accesses this
enriched knowledge base, creating a dynamic feedback loop where metacognitive experiences inform
future metacognitive assessments.

4 Discussion

Our algorithmic formalisations of Flavell’s and Nelson and Narens’ frameworks offer one possible
interpretation of reasoning system limitations. The prefix dominance trap might be understood
as reflecting absent pre-generation monitoring – without FOK assessments and strategy selection,
systems cannot evaluate approaches before committing. Hallucination could correspond to Nelson
and Narens’ commission errors, suggesting missing confidence thresholds or termination criteria.
Inconsistent self-evaluation may indicate the absence of hierarchical monitoring structures that
maintain coherence in human metacognition. While these formalisations provide structured ways
to think about computational components – monitoring loops, confidence transformations, working
memory structures – we acknowledge that psychological theories developed for human cognition
may not map cleanly onto artificial systems. The following specifications suggest architectural
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considerations rather than definitive solutions, and considerable work remains to determine whether
these cognitive principles can meaningfully guide computational implementation.

Dynamic Memory-Guided Reasoning Against Hallucination Nelson and Narens’ λconfidence mech-
anism suggests a theoretical approach to hallucination through coordinated memory-reasoning
confidence assessment. Their framework implies that systems might maintain domain-specific thresh-
olds: λ(domain)

confidence = median({confidenceτ : correct outputs in domain}), calibrated from performance
history. When confidence falls below λ

(τ)
confidence, Nelson and Narens’ model prescribes continuing

search rather than outputting uncertain answers – directly addressing the commission error prob-
lem underlying hallucination. The dynamic adjustment mechanism βτ = exp(−α · search burden)
suggests how systems might balance accuracy against computational cost, maintaining high thresh-
olds for factual domains while adapting to task demands. This distinction between commission
errors (hallucination) and omission errors (refusing to answer) provides theoretical grounding for
confidence-based output control.

Attention Coordination Through Metacognitive Monitoring The finding that LLMs operate within
a lower-dimensional “metacognitive space” [Ji-An et al., 2025] resonates with multiple theoretical
predictions. Flavell’sMEτdifficulty formulation suggests hierarchical monitoring of cognitive states,
while Nelson and Narens’ FOK mechanism implies rapid accessibility assessment operating faster
than full memory retrieval – consistent with Reder’s [1987, 1988] findings that FOK judgments
have shorter latency than actual recall. This convergence suggests that efficient metacognitive
monitoring might naturally operate on compressed representations of cognitive state. The theoretical
framework indicates how different reasoning processes might require different levels of monitoring
granularity, potentially explaining why models report some computations accurately while failing
on others [Lindsey et al., 2025]. These insights, combined with findings that implicit confidence
measures show greater metacognitive sensitivity than explicit ones [Xiong et al., 2023], suggest that
attention allocation could benefit from monitoring internal representations rather than relying solely
on verbalized assessments.

Strategic Reasoning Selection via Metacognitive Control MeCo’s dual-threshold policy [Li et al.,
2025] parallels both Flavell’s strategy selection mechanism and Nelson and Narens’ dual-counter
FOK hypothesis. Flavell’s formulation CSτ = select(s ∈ MKStrategy | MEτdifficulty,MKτ , T ,G)
suggests how metacognitive experiences guide strategy choice. Nelson and Narens’ use of FOK
magnitude ||FOKτ || for search intensity decisions – intensive attention when ||FOKτ || < λ

(τ)
FOK versus

standard or termination based on counter dominance – provides a principled mechanism for adaptive
control. MeCo’s implementation of weak versus strong metacognitive signals, detected through
linearly separable directions in representation space [Zou et al., 2023, Liu et al., 2023], mirrors this
magnitude-based approach. This convergence indicates how reasoning strategy selection – whether
chain-of-thought, direct retrieval, or tool invocation – could be guided by formal metacognitive
principles rather than heuristic rules.

Memory Consolidation for Adaptive Learning Nelson and Narens’ experience consolidation mech-

anism (ΦSTM
τ

ψ−→ LTM) pinpoints a fundamental gap in current LLM capabilities. Their formulation
of experience tuples Φτ = (MEτ , Strategyτ ,Outcomeτ ) suggests how systems might learn from
their own cognitive experiences, updating metacognitive knowledge about strategy effectiveness,
monitoring accuracy, and resource requirements. This aligns with Didolkar et al. [2024]’s extraction
of metacognitive knowledge through skill annotations, though current approaches capture only static
snapshots rather than dynamic learning. The framework’s emphasis on pattern recognition across
experience tuples – identifying which strategies succeed for which task types under which confi-
dence levels – suggests that true adaptive behavior requires explicit mechanisms for metacognitive
memory beyond current in-context learning. While current LLMs rely on fixed architectures with
static learning mechanisms, concepts like the Darwin Gödel Machine [Zhang et al., 2025] point
toward systems that could empirically evolve their own metacognitive strategies, transforming the
consolidation process itself based on accumulated experience.

5 Limitations

While our formalisation provides theoretical foundations for understanding reasoning failures through
metacognitive principles, several limitations constrain the immediate applicability of this work.

8



Implementation challenges We have not proposed how to implement metacognitive constructs
such asMEdifficulty or FOK+/− in practice. Whether these subjective “feelings” should be realised
as learned representations, designed features, or emerge from architectural properties remains un-
specified. The translation from psychological experiences to computational mechanisms presents
non-trivial challenges, particularly given the parallel nature of transformer architectures versus the
sequential processing assumed in our algorithms.

Computational complexity The MGV framework introduces substantial overhead through iterative
monitoring-generation-verification cycles, multiple metacognitive state updates, and experience
consolidation mechanisms. We have not analysed the computational cost-benefit trade-offs, nor
determined whether simpler metacognitive mechanisms might achieve comparable benefits with
reduced complexity.

Theoretical foundations We largely accept Flavell’s and Nelson and Narens’ theories without critical
examination of their limitations or controversies within cognitive science. Alternative metacognitive
theories might provide different insights, and the suitability of these particular frameworks for
computational systems remains unexamined.

6 Conclusion

This paper has presented a theoretical exploration of how metacognitive principles from cognitive
science might address fundamental limitations in language model reasoning architectures. Through
systematic formalisation of Flavell’s cognitive monitoring model and Nelson and Narens’ metamem-
ory framework, we have translated psychological constructs into computational structures, revealing
specific architectural gaps in current test-time reasoning approaches. The resulting Monitor-Generate-
Verify framework suggests how explicit metacognitive mechanisms – pre-generation monitoring,
dynamic confidence thresholds, and experience consolidation – could potentially address issues such
as the prefix dominance trap.

However, translating these theoretical insights into practical architectures remains an open challenge.
The gap between abstract metacognitive experiences and implementable computational mechanisms is
substantial, and whether the additional complexity of MGV architectures would yield commensurate
benefits requires empirical investigation. Future work must address how to operationalise subjective
monitoring signals, implement working memory mechanisms compatible with parallel processing,
and design efficient consolidation processes that enable genuine metacognitive learning.

Despite these limitations, we believe examining established cognitive theories provides valuable
perspectives on architectural evolution. As language models increasingly tackle complex reasoning
tasks, understanding the computational principles underlying human metacognition may guide
development of systems that monitor their own cognitive states, adaptively select strategies, and learn
from their reasoning experiences. Whether through direct implementation of MGV principles or
through architectures inspired by metacognitive insights, bridging cognitive science and artificial
intelligence remains a promising direction for advancing reasoning capabilities.
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A Flavell’s Model of Cognitive Monitoring

Flavell [1979] describes metacognition as a dynamic control architecture comprising four interacting
components: metacognitive knowledge, metacognitive experience, goals (or tasks), and actions (or
strategies). Rather than viewing metacognition as merely stored knowledge about cognition, Flavell
presents it as a dynamic control system. This system operates through continuous interactions between
four elements: what agents know about their cognitive capabilities (metacognitive knowledge), what
they feel about their current cognitive state (metacognitive experiences), what they aim to achieve
(goals), and how they control their thinking (strategies). Central to Flavell’s model is the principle of
reciprocal interaction amongst these components. Rather than operating as independent modules,
they form an integrated system characterised by continuous bidirectional influences: metacognitive
knowledge guides both strategy selection and the interpretation of ongoing cognitive experiences;
these conscious experiences, in turn, update the knowledge base and prompt strategic adjustments;
task-goals determine which aspects of metacognitive knowledge become most salient; and the
outcomes of chosen actions provide feedback that shapes both immediate metacognitive experiences
and longer-term understanding of effective cognitive approaches. This dynamic interplay positions
metacognition as a self-regulating system capable of adaptive control over cognitive processes.

Initialisation Let T be a task and G be the associated goal. We establish the initial system state:

S0 = f(T ,G)

where (T ,G) is self-imposed or externally-imposed.

While Flavell [1979] treats ‘goals’ and ‘tasks’ as equivalent, we maintain a computational distinction
to enhance the model’s precision: T represents the specific cognitive enterprise, whilst G represents
the desired outcome or success criteria. This separation enables clearer analysis of metacognitive
processes, such as assessing the cognitive demands of T relative to G, or specifying which approaches
to employ for T to achieve G. For instance, the same reasoning task (T : logical problem-solving)
might require different metacognitive assessments depending on whether the goal is speed (G1: quick
approximation) or accuracy (G2: verified solution).

M-G-V (Information Processing) Cycle For monitoring cycles τ = 0, 1, . . . , T :

WHILE Sτ = ACTIVE:

1. MONITOR: Monitor cognitive status through retrieval of metacognitive knowledge and
assessment of metacognitive experience.
Knowledge activation operates differently across metacognitive cycles, with initial cy-
cles relying solely on task-goal combinations while ongoing cycles incorporate emerging
metacognitive experiences. At t = 0, the system identifies potentially relevant metacognitive
knowledge based exclusively on the task-goal pairing. In subsequent cycles (τ > 0), the
knowledge base expands as metacognitive experiences (ME) from the previous cycle τ − 1
triggering additional relevant knowledge.

MKτ =

{
retrieve(MK, T ,G) if τ = 0

MKτ−1 ∪ retrieve(MK,MEτ−1) if τ > 0

According to Flavell [1979], metacognitive knowledge comprises three major categories:

• Agent Variables (MKAgent): Knowledge about cognitive agents’ characteristics and
capabilities that applies across different cognitive endeavours. These are fundamen-
tally subjective beliefs about processing preferences, strengths, and limitations rather
than objective assessments. For computational agents, these may represent learned
self-models – representations of performance patterns, processing preferences, and
comparative capabilities derived from experience across cognitive tasks.

• Task Variables (MKTask): Knowledge about cognitive situation assessment, including:
(1) information characteristics (e.g., familiarity, complexity, organisation), and (2) task
demands and goals. This knowledge is evaluative – understanding what task character-
istics mean for cognitive processes and goal achievement, not merely recognising the
characteristics themselves.
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• Strategy Variables (MKStrategy): Knowledge concerning the effectiveness of cognitive
strategies (CS) and metacognitive strategies (MS). Across different goals and task
types, CS are cognitive operations that address problem-solving procedures such as
applying domain-specific algorithms or step-by-step problem decomposition, whereas
MS monitor and regulate such cognitive processes. For instance, chain-of-thought
reasoning represents a CS for solving problems systematically, while deciding to
employ chain-of-thought based on problem complexity assessment represents aMS.
Flavell [1979] explicitly incorporates both strategy types within this category, reflecting
his theoretical position that strategy selection constitutes a fundamentally metacognitive
process requiring knowledge about when, how, and why particular approaches prove
effective under specific conditions.

These categories function as an integrated system: task variables diagnose cognitive demands,
strategy variables prescribe responses, and agent variables contextualise both within the
agent’s capabilities1.
Flavell [1979] distinguishes between knowledge-based experiences, which ‘are best de-
scribed as items of metacognitive knowledge that have entered consciousness’ (e.g., suddenly
recalling a relevant strategy), and feeling-based experiences, which ‘clearly cannot be de-
scribed that way’ (e.g., feeling confused).
This dual nature of metacognitive experience – alternating between immediate phenomeno-
logical feelings and knowledge-based assessments – motivates our formal representation
using the exclusive-or operator ⊕. In this formulation, feel() captures the pure subjective
sensations of cognitive state, while assess() represents evaluations informed by metacogni-
tive knowledge. The operator ⊕ thus reflects Flavell’s distinction between feeling-based
experiences (phenomenological states that cannot be reduced to knowledge) and knowledge-
based experiences (instances of metacognitive knowledge entering consciousness).
Our exclusive-or formalisation captures the observation that these two modes typically
alternate rather than blend, though we acknowledge that this binary representation consti-
tutes a modelling simplification of potentially richer interactions. Accordingly, this binary
characterisation suggests that, at any given moment, an agent experiences either raw cogni-
tive feelings awaiting interpretation or automatic, knowledge-influenced assessments. The
temporal alternation between these exclusive states gives rise to the evolving metacognitive
experience that guides subsequent processing.
At this stage, it is notable that Flavell [1979, p. 909] primarily associates metacognitive
experience with the subjective sense of perceived difficulty. Such experiences may involve
feelings of complexity, comprehension challenges, conceptual opacity, or the sense that
material exceeds current capabilities.

MEτdifficulty =

{
feel(T )⊕ assess(T ,MKτ ) if τ = 0

feel(T ,Outcomesτ−1)⊕ assess(T ,Outcomesτ−1,MKτ ) if τ > 0

Accordingly,MEτdifficulty evolves through iterative cycle-dependent assessments, progressing
from initial coarse-grained feelings to increasingly nuanced evaluations that identify specific
challenge sources and their implications for strategy selection. These experiences could
help identify specific sources of obstacles and serve to guide the agent’s attentional and
regulatory focus.

2. GENERATE: Control cognitive activity through strategy selection and execution.
Flavell [1979, p. 909] emphasises that this stage centres on the selection of cognitive strate-
gies (CSτ ) through the integration of metacognitive experiences and knowledge. Metacog-
nitive experiences of difficulty (MEdifficulty), whether feeling-based or knowledge-based,
function as computational signals that indicate cognitive status. However, these signals
require interpretation through metacognitive knowledge to guide effective strategy selection.

1The distinction between MKStrategy and MKTask emerges from their functional roles. MKTask enables
diagnosis by identifying what makes cognitive enterprises demanding and how task characteristics influence goal
achievement probability, whereas MKStrategy enables prescription by specifying which cognitive approaches to
deploy given those diagnostic assessments. Task variables answer ’what challenges does T present relative to
G?’ and strategy variables answer ’which approaches for T will achieve G?’
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As Flavell [1979, p. 906] establishes, effective cognitive regulation emerges only when
metacognitive experiences combine with metacognitive knowledge, transforming ambiguous
feelings into actionable strategic decisions.
The strategy selection process draws uponMKStrategy, which encompasses knowledge about
both metacognitive strategies (MS) and cognitive strategies (CS). Although Flavell does not
specify the exact selection mechanism, his examples suggest a two-phase pattern-matching
process. In the first phase,MKStrategy guides the interpretation ofMEτdifficulty, transforming
general difficulty signals into precise diagnostic patterns. For instance, metacognitive
knowledge might specify “when experiencing content uncertainty, identify specific unknown
terms” or “when procedurally confused, assess whether confusion stems from missing
steps versus unclear sequence”. In the second phase, these refined difficulty patterns
activate corresponding cognitive strategies from MKStrategy – content uncertainty with
identified terms triggers seeking definitions, whilst procedural confusion from missing steps
activates searching for worked examples. Throughout this process, the selection mechanism
integrates agent capabilities (MKAgent) and task characteristics (MKTask) to identify the
most appropriate strategy for achieving G given T .

CSτ = select(s ∈MKStrategy | MEτdifficulty,MKτ , T ,G)
The selected cognitive strategy is implemented to produce cognitive outcomes (COτ ),
generating a feedback that is rich in nature, as as it encompasses not only task progress
information but also a new context for the next cycle’s monitoring and potential strategy
adjustment.

COτ = execute(CSτ , T ,G)
3. VERIFY: Evaluate progress and determine continuation.

Following strategy execution, Flavell [1979, p. 909] comments that the outcomes potentially
‘trigger additional metacognitive experiences about how the endeavour is faring’. These
evaluative experiences (MEτevaluative) are about performance rather than difficulty.

MEτevaluative = feel(COτ )⊕ assess(COτ ,MKτ )
These experiences, again informed and guided by pertinent metacognitive knowledge,
instigate the metacognitive strategy of surveying ‘all that [the agent has] learned to see if it
fits together into a coherent whole, if it seems plausible and consistent with [the agent’s]
prior knowledge and expectations, and if it provides an avenue to the goal’ [Flavell, 1979,
p. 909].

MSτ = select(s ∈MKmeta
Strategy | ME

τ
evaluative,MKτ , COτ ,G)

where

MSτ =


coherence ifMEτevaluative signals fragmented understanding
plausibility ifMEτevaluative signals doubtful results
consistency ifMEτevaluative signals unexpected outcomes
goal-conduciveness ifMEτevaluative signals uncertain progress

MEτevaluative signals the need for assessment. For example, “feeling uncertain about validity
of the processed outcome” or “sensing incomplete understanding despite completion of
process”. These evaluative experiences activate relevant metacognitive strategies from
MKStrategy. For instance, uncertainty about validity triggers plausibility checking, while
sensing incompleteness activates coherence assessment to identify gaps.
MSτ represents the strategic choice to conduct comprehensive evaluation along four
possible dimensions: coherence (“do the outcomes form a consistent understanding?”),
plausibility (“are the results believable given prior knowledge?”), consistency (“do outcomes
align with initial expectations?”), and goal-conduciveness (“do current results provide a
pathway to goal achievement?”). The execution systematically evaluates COτ against
relevant knowledge:

14



MOτ = execute(MSτ , COτ ,MKτ ,G)

Flavell emphasises that metacognitive experiences can ‘add to’, ‘delete from’, or ‘revise’
the metacognitive knowledge base through Piagetian [Flavell, 1963] mechanisms. The
agent observes relationships among goals, strategies, experiences, and outcomes across the
complete monitoring cycle.
Let Φτ represents the complete experience tuple, whereMEτ = (MEτdifficulty,ME

τ
evaluative),

Strategyτ = (CSτ ,MSτ ) and Outcomeτ = (COτ ,MOτ ):

Φτ = (MEτ , Strategyτ ,Outcomeτ ) (1)
MK = update(MK,Φτ ) (2)

Based on the comprehensive metacognitive evaluation, the system determines its next state:

Sτ+1 =

{
ACTIVE if ¬goal_achieved(COτ ,G)
TERMINATE if goal_achieved(COτ ,G)

B Nelson and Narens’ Model of Metamemory

Nelson and Narens [1990] theorise metacognitive systems with particular focus on metamemory
in the context of self-directed, self-paced learning and retrieval tasks. Their framework establishes
metacognition as fundamentally hierarchical, distinguishing between cognitive processes that operate
on mental content (object-level) and those that operate on cognitive processes themselves (meta-
level). This two-level architecture provides the theoretical foundation for understanding how cognitive
systems achieve self-regulation and control during learning activities.

According to their model, the meta-level maintains a dynamic internal representation of the object-
level, functioning as a mental simulation that enables the system to monitor current cognitive states
and guide transitions towards desired goals. The interaction between levels operates through two
distinct information flows, control (meta-level→ object-level) and monitoring (object-level→ meta-
level). Control processes enable the meta-level to modify object-level states or processes – such as
allocating study time to difficult material or switching from rote memorisation to elaborative rehearsal
strategies. Monitoring processes provide the meta-level with information about current object-level
states, updating its internal model of the cognitive situation. These relationships connotes two notable
properties: they are logically independent (control does not inherently generate feedback about its
effects) and asymmetric (the meta-level maintains a model of the object-level whilst the object-level
operates without any corresponding representation of the meta-level).

B.1 Acquisition Process

Initialisation Given a task (T ) and goal (G) with a target performance level (ρ∗), the agent establishes
the norm of study (Ns):

MKSTM
0 = retrieveθ(MK, T ,G)

δretention = formulate(MKSTM
0 , τdelay, T ,G)

Ns = ρ∗ × (1 + δretention)

At the initialisation stage (τ = 0), a global metacognitive parameter (Ns) operationalises abstract
goals into quantified mastery criteria, which Nelson and Narens [1990, p. 130] define as ‘the overall
degree of mastery the person believes should be attained during acquisition’.

Following Ericsson and Simon [1984], monitoring operations occur within working memory (STM),
withMKSTM

0 denoting the metacognitive knowledge retrieved into this workspace at τ = 0. Informa-
tion from long-term memory (LTM) may be accessed by first copying it into STM with probability θ
[Atkinson and Shiffrin, 1968], captured through the notation retrieveθ(·) for this probabilistic access
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during metacognitive monitoring. The term δretention represents the agent’s theory of retention – beliefs
about memory decay over the interval τdelay.

This formulation reflects Nelson and Narens’ insight that effective learning requires anticipatory
compensation for memory decay. The model predicts systematic variation in norm-setting behaviour
across agents and contexts. For instance, an agent targeting 90% test performance (ρ∗ = 0.9) who
expects 20% decay (δretention = 0.2) must achieve 108% mastery during acquisition. Moreover, the
framework anticipates differential standards across learning contexts: conceptual understanding tasks
(G1, with δretention = 0.1) vs. verbatim recall tasks (G2, with δretention = 0.2) yield distinct acquisition
targets (99% vs. 108% respectively) even under identical performance goals.

M-G-V (Learning) Cycle For learning cycles τ ∈ {1, . . . , Tlearn}, let Tτ = {ij : j ∈ Jτ} denote
the set of items remaining in the task at cycle τ , where Jτ ⊆ {1, 2, . . . , N} represents the indices of
items still requiring learning. ΦSTM

τ represent the cumulative learning experience in working memory.

WHILE Sτ = ACTIVE:

1. MONITOR: Assess current mastery for each item ij ∈ Tτ .
Monitoring involves retrieving metacognitive knowledge and generating metacognitive
experiences about the current learning state.

MKSTM
τ =MKSTM

τ−1 ∪ retrieveθ(MK,MEτ−1) if τ > 0

MEτ,j =
{
[EOLτ,j , null] if τ = 0

[FOKτ,j , null] if τ > 0

where:

EOLτ,j = feel(ij)⊕ assess(ij ,MKSTM
τ ) if τ = 0

FOKτ,j = feel(ij , COτ−1,j)⊕ assess(ij , COτ−1,j ,MKSTM
τ ) if τ > 0

Metacognitive experiences are represented as vectors, reflecting Nelson and Narens’ proposal
of their multidimensional nature. Both Ease of Learning (EOL) and Feeling of Knowing
(FOK) are immediate phenomenological experiences that emerge during cognitive tasks,
illustrating how subjective feelings support monitoring functions, serving as the primary
input for subsequent control decisions [Nelson and Narens, 1990, p. 160].

2. GENERATE: Transforms monitoring outputs into executable learning actions.
Resources are allocated inversely proportional to their EOL or FOK, and strategy selection
integrates metacognitive inputs to map learning methods to individual items.

rτ,j = Rtotal ×
wj∑N
k=1 wk

, where wj = (MEτ,j [1])−1

στ,j = select(s ∈MKStrategy | ij , rτ,j ,MEτ,j ,MKτ )

The learning plan Pτ,j = (ij , rτ,j , στ,j) is executed to produce cognitive outcomes (new
memory state).

COτ,j = execute(Pτ,j)

3. VERIFY: Assess learning progress and determines cycle continuation.
Judgements of Learning (JOL) evaluate current mastery levels following cognitive outcomes.

JOLτ,j = feel(ij , COτ,j)⊕ assess(ij , COτ,j ,MKτ )
MEτ,j = [MEτ,j [1], JOLτ,j ]

ΦSTM
τ,j = (MEτ,j , ij , rτ,j , στ,j , COτ,j)

ΦSTM
τ = ΦSTM

τ−1 ∪ {ΦSTM
τ,j : j ∈ Jτ}
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For each item ij ∈ Tτ , an agent computes the mastery discrepancy. Items that have reached
the norm of study are removed from further consideration. Thus, Tτ+1 = {ij : j ∈ Jτ+1}
contains only items still requiring learning.

∆τ,j = Ns − JOLτ,j
Jτ+1 = {j ∈ Jτ : ∆τ,j > 0}

Learning continues as long as any item remains below the mastery threshold:

Sτ+1 =

{
ACTIVE if Jτ+1 ̸= ∅
TERMINATE otherwise

B.2 Retrieval Process

Initialisation Given a retrieval queryQ, the agent establishes retrieval goals and accesses contextually
relevant metacognitive knowledge for search control.

MKSTM
0 = retrieveθ(MK,Q)

Nelson and Narens [1990] conceptualise FOK through the dual-counter hypothesis: one component
accumulates evidence for information presence in memory (affirmative FOK, FOK+

τ ), while the other
accumulates evidence for information absence, consistent with ‘knowing not’ [Kolers and Palef, 1976]
(negative FOK, FOK−

τ ). This dual mechanism enables both continued search when positive evidence
accumulates and efficient termination when negative evidence dominates, preventing exhaustive
search behaviour.

The initial thresholds λ(0)confidence and λ(0)FOK are established through the agent’s privileged access to
personal metacognitive calibration history withinMKSTM

0 :

λ
(0)
FOK = median({||FOK|| : successful retrievals inMKSTM

0 })

λ
(0)
confidence = median({confidenceτ : correct outputs inMKSTM

0 })

FOK thresholds are calibrated based on successful retrievals – episodes where dual-counter FOK
assessment correctly predicted retrieval outcomes, with ||FOKτ || (L1 norm) capturing the magnitude
of metacognitive evidence. Confidence thresholds follow analogous calibration, reflecting historical
accuracy at different confidence levels. This personalised approach embodies the No-Magic Hypothe-
sis by utilising recallable metacognitive knowledge whilst accommodating domain-specific variations
in metamemory accuracy.

M-G-V (Search) Process For search cycles τ ∈ {0, 1, . . . , Tsearch}, let Aτ represent the current
answer state (retrieved answer or null), and ΩSTM

τ represent the cumulative retrieval experience in
working memory.

WHILST search is active:

1. MONITOR: Assess Feeling-of-Knowing (FOK) and retrieval accessibility.
The metacognitive decision to initiate search relies on rapid, preliminary FOK judgement
that operates faster than actual recall, enabling efficient search control [Reder, 1987, 1988].
Following the No-Magic Hypothesis, FOK monitoring accesses recallable item attributes
– acquisition history, partial cues, contextual associations – rather than directly tapping
unconscious memory states.

MKSTM
τ =

{
retrieveθ(MK,Q) if τ = 0

MKSTM
τ−1 ∪ retrieveθ(MK, FOKτ−1) if τ > 0

FOKτ =

[
FOK+

τ

FOK−
τ

]
=

{
feel(Q)⊕ assess(Q,MKSTM

τ ) if τ = 0

feel(Q,Aτ−1)⊕ assess(Q,Aτ−1,MKSTM
τ ) if τ > 0
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At τ = 0, preliminary FOK assessment determines search initiation through rapid accessibil-
ity evaluation using the dual-counter system. For subsequent cycles (τ > 0), ongoing FOK
monitoring incorporates previous search outcomes (Aτ−1) to reassess continued retrieval
likelihood, with both affirmative (FOK+

τ ) and negative (FOK−
τ ) counters updating based on

accumulating evidence.
2. GENERATE: Deliberately attend to search cues and execute automatic search.

Following Nelson and Narens’ insight that search execution is automatic once initiated, the
generation phase focuses on conscious cue attention rather than strategy selection. The
dual-counter FOK hypothesis provides metacognitive control over cue generation intensity,
reflecting the principle that monitoring should adaptively influence control processes.

Sτ =


ACTIVEintensive if ||FOKτ || < λ

(τ)
FOK

ACTIVEstandard if ||FOKτ || ≥ λ(τ)FOK ∧ FOK+
τ > FOK−

τ

TERMINATE if ||FOKτ || ≥ λ(τ)FOK ∧ FOK−
τ > FOK+

τ

The search intensity logic operates through evidence-based decision making. When the
total magnitude of metacognitive evidence falls below the threshold (||FOKτ || < λ

(τ)
FOK),

insufficient evidence has accumulated from both counters to make a reliable continuation
decision. This triggers intensive cue attention to gather additional metacognitive information,
preventing premature termination based on weak or ambiguous signals. When sufficient
evidence exists (||FOKτ || ≥ λ

(τ)
FOK), the system evaluates counter dominance: positive

dominance (FOK+
τ > FOK−

τ ) indicates sufficient evidence for item presence to warrant
continued search with standard attention, while negative dominance (FOK−

τ > FOK+
τ )

provides sufficient evidence for item absence to justify search termination.
If Sτ = ACTIVE, the agent deliberately attends to retrieval cues that trigger automatic
pattern-recognition-guided search, with attention determined by metacognitive confidence.

cueτ =

{
attendintensive(Q,MKSTM

τ ) if Sτ = ACTIVEintensive

attendstandard(Q,MKSTM
τ ) if Sτ = ACTIVEstandard

Once cues are consciously attended to, the search process searchauto(·) operates automatically
through pattern recognition. Due to this automatic nature, Aτ for consecutive cycles
τ = 0, . . . , k may yield identical results, reflecting the deterministic nature of automatic
search.

Aτ = searchauto(cueτ )

3. VERIFY: Evaluate retrieved answers based on confidence, update thresholds, and determine
continuation.
According to Nelson and Narens [1990], confidence governs output decisions for retrieved
answers, while FOK governs continuation decisions when no answer is found, with both
involving dynamic thresholds that can change during search.

confidenceτ =

{
assess(Aτ ,Q,MKSTM

τ ) if Aτ ̸= null
0 if Aτ = null

decisionτ =


OUTPUT Aτ if Aτ ̸= null ∧ confidenceτ ≥ λ(τ)confidence

CONTINUE if Aτ ̸= null ∧ confidenceτ < λ
(τ)
confidence

CONTINUE if Aτ = null ∧ FOK+
τ > FOK−

τ

OUTPUT null (omission) if Aτ = null ∧ FOK−
τ > FOK+

τ

This decision structure distinguishes between two primary error pathways identified by
Nelson and Narens: (1) Commission errors occurring when Aτ ̸= null but the outputted
answer is incorrect, typically associated with high confidence but incorrect retrieval; and (2)
Omission errors occurring when search terminates without producing an answer (Aτ = null),
often following prolonged search with declining FOK.
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The retrieval experience accumulates in working memory, creating a comprehensive search
history that informs adaptive threshold adjustment:

ΩSTM
τ =

{
[(FOKτ , cueτ ,Aτ , confidenceτ )] if τ = 0

ΩSTM
τ−1 ∪ [(FOKτ , cueτ ,Aτ , confidenceτ )] if τ > 0

Following the principle of satisficing [Simon, 1979], both confidence and FOK thresholds
undergo dynamic adjustment based on accumulated search burden. This reflects the psy-
chological tendency for acceptance criteria to progressively lower as the cost of continued
searching increases. The satisficing adjustment factor captures this adaptive mechanism:

βτ = exp(−α · (τ +
∑

(Ai,confi)∈ΩSTM
τ

1[Ai = null ∨ confidencei < λ
(i)
confidence]))

where α represents the satisficing adjustment rate, and the exponential decay function models
the psychological burden accumulating from both temporal persistence (τ ) and retrieval
failures (unsuccessful attempts or low-confidence outcomes). This burden manifests as
decreasing acceptance standards, operationalised through threshold reduction:

λ
(τ+1)
confidence = λ

(τ)
confidence · βτ

λ
(τ+1)
FOK = λ

(τ)
FOK · βτ

This adaptive mechanism ensures that answers previously deemed inadequate may become
acceptable as search costs accumulate. Consequently, at cycle τ + 1, a previously retrieved
answer might satisfy the lowered confidence threshold and be output, even though it failed
to meet the more stringent earlier criteria.
The search state for the next cycle is determined by:

Sτ+1 =

{
ACTIVE if decisionτ = CONTINUE
TERMINATE if decisionτ ∈ {OUTPUT Aτ ,OUTPUT null}
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frameworks rather than proving new theoretical results.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results?

Answer: [NA]

Justification: The paper does not include experiments; it presents theoretical formalisations
of cognitive science theories.

5. Open access to data and code
Question: Does the paper provide open access to the data and code?

Answer: [NA]

Justification: The paper is purely theoretical and does not involve experiments requiring
code or data.

6. Experimental setting/details
Question: Does the paper specify all the training and test details?

Answer: [NA]

Justification: The paper does not include experiments.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined?

Answer: [NA]

Justification: The paper does not include experiments.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources?

Answer: [NA]

Justification: The paper does not include experiments.

9. Code of ethics
Question: Does the research conducted in the paper conform with the NeurIPS Code of
Ethics?
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Answer: [Yes]
Justification: The theoretical work conforms with ethical guidelines and poses no ethical
concerns.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts?
Answer: [NA]
Justification: This is foundational theoretical work without direct societal applications or
deployment considerations.

11. Safeguards
Question: Does the paper describe safeguards for responsible release?
Answer: [NA]
Justification: The paper poses no risks as it neither releases models nor datasets, only
theoretical formalisations.

12. Licenses for existing assets
Question: Are the creators or original owners of assets properly credited?
Answer: [NA]
Justification: The paper does not use existing code, data, or model assets.

13. New assets
Question: Are new assets introduced in the paper well documented?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include full details?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.

15. Institutional review board (IRB) approvals
Question: Does the paper describe potential risks incurred by study participants?
Answer: [NA]
Justification: The paper does not involve research with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important component of the
core methods?
Answer: [NA]
Justification: LLMs are not used as a component of the core theoretical formalisations
presented.
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