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Abstract

Human cognition is characterized by a remarkable ability to seamlessly coordinate
between fast, intuitive processing (System 1) and slower, analytical reasoning
(System 2) through metacognitive mechanisms. We introduce System 1.5, a the-
oretical framework implementing metacognitive regulation in artificial systems
that monitors cognitive processes, generates responses, and evaluates outcomes to
determine when to rely on intuition versus analysis. Our key contributions include
a theoretical foundation bridging cognitive science and AI, a formal framework
for metacognitive regulation, and insights into coordinating different processing
modes in expert decision-making.

1 Introduction

The divide between intuitive and analytical thinking has long challenged both cognitive science
and artificial intelligence. Whilst modern AI architectures have made significant progress in both
domains separately, they lack the metacognitive mechanisms crucial for expert decision-making –
where success depends on dynamically shifting between these modes of thought. Unlike previous
approaches treating System 1 and System 2 as discrete entities, we develop a framework that
acknowledges their existence on a continuum, providing explicit mechanisms for coordination
between them. Through this work, we aim to advance both our theoretical understanding of human
metacognition and its practical implementation in artificial systems, whilst offering new perspectives
on how different processing modes can be effectively combined in expert decision-making. We
begin by examining influential theories of intuition and cognitive heuristics to establish the Common
Model of Intuition, before introducing System 1.5 as a theoretical framework for implementing
metacognitive regulation in artificial systems.

2 Cognitive Heuristics: The System 1 Framework

In this section, we first explore four influential theories of expert intuition: Hubert Dreyfus’s phe-
nomenological approach [Dreyfus, 1972, Dreyfus and Dreyfus, 1984, 1986, 1996, 2005], Herbert
Simon’s information processing theory [Newell and Simon, 1972, Simon and Chase, 1973], Daniel
Kahneman’s dual-process model [Kahneman, 2003, Kahneman and Klein, 2009], and Fernand
Gobet’s template theory [Gobet and Simon, 1996, Gobet and Chassy, 2009]. Each of these theo-
ries aims to explain the phenomenon of expert intuition, from Dreyfus’s emphasis on embodied,
non-representational knowledge to Simon’s focus on chunking and pattern recognition. We then
examine how these theories complement and contrast with each other, providing a comprehensive
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framework for understanding expert intuition across various domains. This analysis will later serve
as a foundation for developing the Common Model of Intuition.

2.1 Four Theories of Intuition

2.1.1 Hubert Dreyfus

Dreyfus’s theory of intuition, grounded in phenomenology, presents a stark critique of symbolic
approaches to intelligence [Dreyfus, 1972]. Central to his framework is the notion that human
cognition is fundamentally embodied, situated, and experiential. Dreyfus argues that experts do not
rely on symbolic representations but instead perceive their environment and make decisions through
holistic processes [Dreyfus and Dreyfus, 1984, 1986, 1996, 2005]. His theory posits a five-stage
model of expertise development: novice, advanced beginner, competent, proficient, and expert. At
the expert stage, Dreyfus contends that understanding and decision-making become intuitive and
fluid, transcending rule-based behaviour.

Despite its face validity, Dreyfus’s theory has been challenged by empirical data on several fronts.
Contrary to Dreyfus’s predictions, expertise in many domains does not necessarily imply a decrease
in abstract thought and an increase in concrete thought [Gobet and Chassy, 2009]. The existence
of distinct stages in expertise development, as proposed by Dreyfus, lacks robust empirical support
[Van der Maas and Molenaar, 1992]. Furthermore, the success of heuristic-search computer programs
in achieving expert-level performance in complex games like chess contradicts Dreyfus’s assertion
that intuition is necessary for expert performance. Critics argue that the theory underestimates the
role of conscious problem-solving in expert performance and that neuroscientific evidence does not
support the notion of holistic pattern recognition as envisioned by Dreyfus [Gobet and Chassy, 2009].

2.1.2 Herbert Simon

Simon’s theory of intuition is firmly rooted in mechanistic explanations and experimental data.
Simon posits that experts operate under the same cognitive limitations as novices, such as limited
attention and short-term memory capacity [Simon and Chase, 1973]. The key difference, according to
Simon, lies in experts’ acquisition of a vast repertoire of perceptual patterns associated with possible
actions, termed "productions" [Newell and Simon, 1972]. In this framework, intuition is explained
by the firing of a production: recognising a familiar pattern triggers an automatic solution. Simon’s
theory finds support in experimental data from domains such as chess and physics, demonstrating
experts’ ability to perceive chunks of information and quickly recognise solutions to routine problems
[Simon and Chase, 1973, Larkin et al., 1980]: That is, intuition to Simon is a cognitive mechanism
for reducing the search space. Computer simulations have successfully modelled various aspects
of this theory, including chunk acquisition and the transition from backward to forward search in
problem-solving [Gobet and Simon, 2000].

However, Simon’s theory has not escaped criticism. Detractors argue that it fails to explain how a
single move is selected when multiple chunks are recognised, and that it does not fully account for the
rapid, fluid nature of expert behaviour [Dreyfus and Dreyfus, 1986]. Some researchers contend that
the theory does not capture the creative, constructive aspects of intuition [De Groot, 1986]. Technical
objections include the suggestion that encoding into long-term memory may be faster than proposed
by the chunking theory, and that the proposed chunk sizes may be too small to reflect conceptual
knowledge [Holding, 1985, Gobet and Simon, 2000]. Critics also point out that Simon’s computer
models either failed to reach high levels of expertise or relied heavily on hand-coded knowledge
[Gobet and Chassy, 2009].

2.1.3 Daniel Kahneman

Kahneman’s dual-process theory of cognition offers a nuanced perspective on intuition, bridging
cognitive psychology and behavioural economics. It distinguishes between fast, automatic, effortless,
associative, and often emotionally charged "System 1" thinking, and slower, deliberative, and effortful
"System 2" processes [Kahneman, 2003, 2011]. The difference in cognitive effort provides the most
useful indication of whether a given mental process belongs to System 1 or 2. Kahneman introduces
the concept of accessibility, which refers to the ease with which mental contents come to mind
[Higgins, 1996]. While Kahneman acknowledges that expert intuition can be highly accurate in
environments with sufficient regularities and where experts have had adequate opportunity to learn
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these regularities [Kahneman and Klein, 2009], he also highlights potential pitfalls. Even in structured
environments, attributes that are routinely and automatically produced without effort (termed "natural
assessments") may lead to systematic biases. These biases often result from cognitive shortcuts or
heuristics, such as the "prototype heuristic" and "affect heuristics" [Tversky and Kahneman, 1974,
1983, Kahneman, 2003].

While Kahneman’s dual-process theory provides insights into both expert and non-expert decision-
making, critics have highlighted several issues with Kahneman’s dual-process theory. Critics have
raised several issues with Kahneman’s dual-process theory. The theory has been criticised for
oversimplifying human cognition [Keren and Schul, 2009] and lacking strong neurobiological
evidence. The distinction between System 1 and System 2 is often unclear [Glöckner and Witteman,
2010], with some arguing that intuitive and deliberative judgments may rely on similar principles
[Kruglanski and Gigerenzer, 2018]. Critics argue that the theory overemphasises System 1’s flaws
while neglecting its adaptive value [Gigerenzer, 2008], and underestimates the role of expertise
in improving intuitive decision-making [Klein et al., 1995, Campitelli and Gobet, 2010] (but see
Kahneman and Klein [2009]). Additionally, the theory may not fully capture the integration of
intuitive and analytical thinking in real-world decision-making [Reyna, 2004]. These critiques
suggest that, while Kahneman’s theory provides valuable insights, it may not fully encompass the
complexity of human cognition and decision-making processes.

2.1.4 Fernand Gobet

Gobet’s template theory extends and refines Simon’s approach, providing a more comprehensive
account of expert intuition through complex knowledge structures and rapid pattern recognition
mechanisms. The theory posits that experts develop chunks, which are perceptual patterns learned
recursively, and which are not necessarily verbalisable and conceptual [Simon and Chase, 1973, Gobet
and Clarkson, 2004, Gobet, 2012]. These chunks function as units of both perception and meaning,
allowing experts to perceive groups rather than individual elements (e.g. chess players seeing groups
of pieces rather than individual pieces). Patterns that recur frequently in the environment evolve
into more complex data structures called templates [Gobet and Simon, 1996, 2000, Gobet and
Chassy, 2009]. Templates, similar to schemas proposed by Bartlett [1995] and Minsky [1974],
consist of a "core" encoding stable information and "slots" encoding variable information. According
to the template theory, chunks and templates acquired through domain-specific experience guide
attention and action. The theory proposes that expertise develops through acquiring a large number
of chunks and templates linked to possible actions, enabling experts to quickly recognise patterns
and make decisions in their domain of expertise. Recently, Ruoss et al. [2024] developed a search-
free transformer model for chess that achieved Elo ratings of 2895 against humans in blitz games,
providing an interesting parallel to the rapid pattern recognition mechanisms proposed in the template
theory.

While Gobet’s template theory addresses several limitations of Simon’s chunking theory – by
explaining how experts can rapidly adapt to new situations by updating variable information in
templates, and by providing a mechanism for the integration of perceptual and conceptual knowledge –
it still faces some challenges. The theory overemphasises long-term memory knowledge structures and
provides limited insight into real-time processing, including creative or adaptive thinking [Linhares,
2005, De Groot et al., 1996]. Although it acknowledges emotions, it fails to offer a detailed
account of the interplay between cognition and emotion. Critics argue that it underestimates the
role of deliberate, conscious thought, particularly in complex situations [Montero and Evans, 2011].
Developed primarily using chess data, its applicability to less structured domains remains open
to question. The theory may overemphasise expertise, potentially neglecting cases where novices
demonstrate effective intuition. Lastly, there has been limited empirical research testing the theory’s
specific predictions on intuition, highlighting the need for further validation of its claims about
intuitive expertise.

2.2 The Common Model of Intuition

The complexity of intuition and the ongoing challenge of comprehending human cognition have been
extensively explored through various theoretical frameworks. While these approaches universally
acknowledge the importance of perceptual learning, they diverge in their treatment of development
(stepwise versus incremental) and the role of analytical processes – with Dreyfus uniquely emphasis-
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ing situatedness and developmental stages. Despite these theoretical variations, scholars generally
agree that a comprehensive theory of human intuition must account for five essential features: rapid
perception and processing, opacity of cognitive processes, holistic understanding, general accuracy
with notable exceptions, and the intrinsic role of emotions [Gobet and Chassy, 2008].

The Common Model of Intuition focuses on characteristics rather than functions, primarily due
to the opacity of the process. This fundamental opacity, which is widely recognised in the field
particularly amongst dual-process theorists like Evans [2003], makes it challenging to delineate
specific functions, leading researchers to describe intuition through its observable features. By
emphasising characteristics, the model accommodates the elusive nature of intuitive processes while
providing a framework for understanding and studying intuition.

While the precise mechanisms underlying intuitive processes remain largely opaque, the four theories
of intuition discussed above converge on certain fundamental principles governing these phenom-
ena. Intuition is more accurately described as a two-part process: the recognition of perceptual or
conceptual patterns in working memory, followed by the rapid access and application of relevant
information stored in long-term memory. This process can be modelled as an IF-THEN rule, where
the IF component represents pattern recognition, and the THEN component represents the "switch"
or activation of associated knowledge and actions. Importantly, the patterns recognised in working
memory encompass both perceptual and conceptual information, broadening our understanding of
intuition beyond mere perceptual recognition to include a wider range of cognitive processes.

These features draw a compelling parallel between human intuition and modern deep neural networks.
Both demonstrate: (i) swift processing of complex inputs; (ii) opacity in input-output processes:
(iii) holistic understanding of situations; (iv) generally accurate outputs with occasional exceptions;
and (v) strong influences from past experiences or training data. Indeed, cognitive scientists often
characterise System 1 processes as emerging from associative learning mechanisms similar to those
found in neural networks [McLeod et al., 1998, Evans, 2003], lending strong support to the view that
deep neural networks could be viewed as an artificial implementation of intuition.

It might be important to end our discussion on System 1 by examining how Bayesian explanations
of learning contrast with the approaches discussed above. On one hand, Simon’s and Gobet’s
theories, while explicitly acknowledging human cognitive constraints (e.g., attention and short-term
memory capacity), emphasise learning as a gradual accumulation of chunks and productions, with
probabilistic information implicitly encoded through chunk connections and frequencies. On the
other hand, Bayesian models (e.g., for an overview, see Griffiths et al. [2008]) frame learning as
a probabilistic updating process that integrates new information with existing knowledge (priors)
to form updated beliefs (posteriors), emphasising uncertainty and experience in shaping decisions.
While Bayesian models do not directly address memory limits, they implicitly account for this by
focusing on the most informative evidence. This theoretical distinction raises an important question
for future research: whether Bayesian reasoning is built-in through an innate frequency-processing
module (System 1) or learned through explicit calculations (System 2) [Cosmides and Tooby, 1996,
Gigerenzer, 2003, Girotto and Gonzalez, 2001, Sloman et al., 2003] (cited in Evans [2003]), or even
whether System 1 is more naturally understood through a frequentist or Bayesian lens. Resolution
of this question would enable subsequent mathematical formalisation of the cognitive processes
involved.

3 System 1.5: Towards Artificial Metacognition

From a phenomenological perspective, there appears to be a metacognitive mechanism that modulates
the engagement of System 1 and System 2 along an Intuitive-Analytical Continuum. This mechanism
functions as a dynamic "switch", regulating the activation of our analytical processes as needed. This
interplay between intuitive and analytical thinking forms the basis of what we term "System 1.5".

The nature and operation of this "switch" raise several questions: What cognitive or neural processes
govern its activation and modulation? How can we design and implement an analogous system in
artificial intelligence? Should it be an explicitly coded feature or an emergent property of the system?

This section addresses these questions by examining several key theoretical perspectives: first
exploring the Intuitive-Analytical Continuum as a more nuanced alternative to the strict System
1/System 2 dichotomy, then reviewing theories of metacognition that explain how the mind regulates
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its cognitive processes, ultimately leading to our proposed System 1.5 architecture that bridges
intuitive and analytical processing in artificial agents.

3.1 The Intuitive-Analytical Continuum

The interplay between intuition and analysis is fundamental to human expertise. Rather than viewing
System 1 and System 2 as dichotomous constructs, it is more persuasive to view them as existing on
an Intuitive-Analytical Continuum. This concept of an Intuitive-analytical Continuum is supported
by various research findings. Evans and Stanovich [2013] acknowledge that while they defend a
dual-process model, they agree that the attributes often associated with Type 1 and Type 2 processing
are continuous in nature. This supports the idea of a continuum rather than two discrete systems.
In the context of expertise, Ericsson and Lehmann [1996] emphasised the importance of deliberate
practice, which often involves analytical reflection, in developing expert performance. Hammond
et al. [1987] introduced the cognitive continuum theory, suggesting that most decision-making tasks
involve a quasirationality1 between intuition and analysis. Collective research suggests that genuine
expertise necessitates a dynamic integration of both intuitive and analytical skills across various
domains. In the field of medical diagnosis, Norman et al. [2007] observed that experts employ both
non-analytical and analytical reasoning strategies. Likewise, in the realm of business decision-making,
Dane and Pratt [2007] advocated for the complementary roles of intuition and analysis.

Thus, the Intuitive-Analytical Continuum refers to the range of cognitive processes that blend intuitive
(System 1) and analytical (System 2) thinking. This continuum represents the dynamic interplay
between rapid, automatic processes and more deliberate, controlled cognition. It acknowledges that
many cognitive tasks involve a mix of intuitive pattern recognition and analytical reasoning, with the
balance shifting based on factors such as expertise, task complexity, and available cognitive resources.

This view of cognitive process aligns with several key points in cognitive science: (i) Expertise
Development – as individuals develop expertise in a domain, processes that were once effortful and
analytical can become more automatic and intuitive [Kahneman and Klein, 2009]. This suggests
a shift along the continuum rather than a jump between discrete systems; (ii) Cognitive Load and
Resource Allocation – the Cognitive Load theory [Sweller, 1994] suggests that as we become more
familiar with a task, we can allocate cognitive resources more efficiently. This could be seen as
movement along the Intuitive-Analytical Continuum; and (iii) Global Workspace theory – Baars
[1997] suggests that the continuum operates as a workspace where attention regulates access to
System 1 components, making them available to System 2 processes only after they receive attention.

The interaction between processing modes raises a fundamental question: what mechanisms control
shifts along this continuum? As Kahneman notes, these systems "can be active concurrently" and
"compete for the control of overt responses" Kahneman and Frederick [2002, pp. 51–52]. This
observation points us toward metacognitive theories that explain how the mind regulates its own
cognitive processes.

3.2 Theories of Metacognition

The concept of metacognition in cognitive science has been explored through various theoretical
frameworks, each offering insights into how the mind monitors and regulates its own cognitive
processes. Metacognitive Theory of Consciousness from Nelson (1990) posits that meta-level
processes monitor and control object-level cognitive processes, demonstrating how consciousness
divides into meta-level and object-level components to enable awareness and control over our mental
processes. This idea is complemented by Baars’ (1997) Global Workspace Theory, which suggests
that analytic reasoning (System 2) operates on information first processed by System 1, with attention
serving as a gateway between unconscious pattern recognition and conscious deliberation – only after
sensory inputs, working memories, and internal representations enter this attentional workspace can
System 2 processes access and manipulate them. And recently, Clark’s (2013) Predictive Processing
Framework suggests that the brain constantly generates and updates predictions through a hierarchical
system that combines knowledge-intensive strategies, integrating higher-level forecasts with incoming

1Hammond’s concept of quasirationality is distinct from pure rationality. It encompasses various combina-
tions of intuition and analysis, potentially leaning closer to the intuitive end of the cognitive continuum in some
instances, and towards the analytic end in others (see Dhami and Mumpower [2018]).
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sensory data in a dynamic cascade of cortical processing that guides our cognitive adaptation to
changing tasks.

Each theory emphasises the necessity of monitoring, generating, and evaluation: Nelson’s theory
directly demonstrates how monitoring is fundamental to meta-level control through its empirical
studies of metamemory, while Baars’ theory shows how planning emerges from the need to selectively
allocate limited conscious processing resources among competing processes, and Clark’s framework
reveals how evaluation is essential through its emphasis on prediction error minimisation. Together,
these theories suggest three fundamental functions: monitoring that enables awareness of cognitive
states, generating that facilitates attentional resource allocation, and evaluation that guides adaptive
behaviour through error correction.

3.3 Designing Metacognition in AI

To define System 1.5, we first highlight that we are not talking about the general notion of metacogni-
tion per se. It is more of a metacognition of experts making judgments. The definitions of expertise
and judgments are as follows:

• Expertise, whether in humans or machines, can be defined as the ability to perform intelligent
tasks in a regular environment, obtaining vastly superior outcomes given cues, compared to
those obtained by the majority of the population. This cognitively inspired definition, aligns
with McCarthy’s (2004) view of intelligence as computational goal achievement and Russell
and Norvig’s (2016) concept of intelligent agents maximising expected performance based
on experience and knowledge.

• Judgement is informed assessments, conclusions, inferences, or predictions generated by ei-
ther human or artificial expertise, based on specialised knowledge, training, or programming
in a particular domain. Notably, this definition emphasises making judgments in a "regular"
environment – one with reliable relationships between cues and outcomes, and continuous,
accurate feedback [Kahneman and Klein, 2009, Waters and Gobet, 2024]. Regularity is a
necessary condition for experts to identify and learn patterns over time, and perform in a
reliable manner with notable exceptions.

These definitions precisely scope the role and requirements of System 1.5 in artificial systems.
Since expertise requires superior performance in regular environments with reliable cue-outcome
relationships, and judgement depends on accurate feedback for learning patterns over time, this
frames System 1.5 not as a general metacognitive system, but as a specialised regulatory mechanism
for environments with clear performance metrics and feedback loops. This aligns well with recent
attempts in improving application in agentic, multi-step reasoning, such as Agent Q [Putta et al.,
2024] designed to beat average human performance in the WebShop environment and V-STaR
[Hosseini et al., 2024] designed to solve code generation and maths reasoning. These systems
demonstrate expertise within specific environments with clear regularities and singular goals of
maximising judgement utility.

Building on these foundational concepts, System 1.5 represents an architectural framework for
metacognitive regulation, specifically focused on mediating between fast, automatic processes
(System 1) and slow, deliberative processes (System 2). It is a framework that can interface with
different AI components as System 1 and System 2, rather than being tied to specific implementations.
Fast, intuitive processes (System 1) could be deep neural networks for visual recognition, language
processing, or rapid evaluation; while slower, deliberative processes (System 2) could be logical
reasoning modules, symbolic systems or algorithmic approximation of certain System 2 functions.

In this section, we propose System 1.5 as a framework with three critical regulatory functions:
Monitor, Generator and Evaluator. Our formulation builds upon the work of Hosseini et al.
[2024], which enables direct comparison with other agentic frameworks and helps clarify System
1.5’s unique contributions. While V-STaR demonstrated the effectiveness of verification-based
approaches, our work takes a step forward by providing a more cognitively plausible framework.
Notably, we prioritise a theoretical description grounded in psychological and cognitive insights
over mathematical formalisation (e.g., Direct Preference Optimisation [Rafailov et al., 2024]), as
we believe establishing strong theoretical foundations must precede the development of precise
computational implementations.
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3.4 System 1.5

Initialization: Let MBASE be a pretrained base model and DSFT = {(xi, yi)}Ni=1 be an initial dataset
where xi represents problem description and yi represents corresponding solution. We obtain:

MSFT = finetune(MBASE,DSFT)

Iterative Process (for iterations t = 1, . . . , T ):

1. For each problem xi, generate k candidate solutions (Cobbe et al., 2022):

{ŷij ∼ Mt(y|xi)}kj=1

2. Construct three datasets:

DGENERATEt = {(xi, ŷi)|zij = preferred}
where zij indicates preference

DEVALUATEt
= {(xi, ŷij , zij)}

containing all solutions with preferences

DMONITORt
= {(xi, ŷij , fij)}

where fij captures "familiarity".
3. Update model:

Mt = finetune(MBASE,DGENERATEt−1
)

"Familiarity" mirrors the brain’s prefrontal regulatory mechanisms [Shimamura, 2008], particularly
in how it orchestrates between different processing modes based on task demands. Similar to how the
prefrontal cortex synthesises diverse signals for metacognitive monitoring and control, we highlight
two different types of familiarity: problem-type recognition and solution-pattern familiarity. The
problem-type recognition component operates analogously to the brain’s pattern recognition systems,
quantifying encounter frequencies with similar problems, while solution-pattern familiarity mirrors
what Miller and Cohen [2001] identified as the prefrontal cortex’s role in synthesising both successful
strategies and error patterns from past experiences. This approach is neurobiologically motivated by
studies showing how the prefrontal cortex integrates both bottom-up perceptual matching (akin to our
problem similarity detection) and top-down executive control (similar to our solution pattern analysis)
[Evans, 1998, 1999], with differential weighting mechanisms that parallel the brain’s belief-bias
regulation demonstrated in empirical evidences in experimental psychology [Evans et al., 1983]. Just
as neuroimaging studies reveal the prefrontal cortex’s role in judgments of learning and feeling-of-
knowing states [Schwartz and Bacon, 2008], our system accumulates these familiarity signals over
time to guide adaptive processing strategies, effectively implementing a computational analog of
what Houdé et al. [2000] demonstrated as the brain’s transition from perceptual matching to executive
control processes based on learned task contingencies and concepts.

At final iteration T , we obtain three specialised functions:

GT = train(DGENERATET−1
) (Generator)

VT = train(DEVALUATET−1
, preference optimisation) (Evaluator)

MT = train(DMONITORT−1
, familiarity assessment) (Monitor)

Inference (for input x): At inference time, we adapt our strategy based on how familiar the problem
is:

1. Compute familiarity: f = MT (x)

2. Determine strategy based on familiarity:

out(x) =


GT (x) if f > θh
argmaxy∈{GT (x)j}k

j=1
VT (x, y) if θl < f ≤ θh

argmaxy∈Y VT (x, y) if f ≤ θl

where k = ⌈C(1− f)⌉ and Y = {GT (x)j}kmax
j=1 ∪ {GT (x|h) : h ∈ System-2(x)}
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The three cases work as follows. When a new problem x is presented, System 1.5 framework first
computes its familiarity score f using the monitor MT , which ranges from 0 to 1. This score,
compared against two thresholds (θh and θl), determines how we approach the problem. For highly
familiar problems (f > θh), we trust our generator GT to produce a single solution directly, similar
to how human experts solve routine problems confidently.

For less familiar problems, our approach becomes more deliberate. With moderate familiarity
(θl < f ≤ θh), we generate multiple solutions, where the number k = ⌈C(1 − f)⌉ adapts to our
familiarity level (lower familiarity triggers more solutions). For instance, with C = 10 and f = 0.8,
2 solutions would be generated. When familiarity is low (f ≤ θl), we not only generate the maximum
number of solutions kmax but also engage an external system with System 2-like capabilities for
additional guidance. In both cases, our verifier VT evaluates and ranks all candidate solutions,
ensuring we select the most promising one.

This adaptive inference strategy mirrors human problem-solving: for familiar problems, we rely
on direct solutions; for less familiar ones, we generate and evaluate multiple approaches; and for
unfamiliar problems, we also leverage external knowledge or System 2-like approaches.

4 Discussion

This paper presents System 1.5, a theoretical framework for metacognitive regulation in artificial
systems that bridges intuitive and analytical processing. Whilst our work establishes important
theoretical foundations, several limitations and future directions warrant discussion.

First, significant aspects of the framework remain to be developed. We have not fully specified what
constitutes System 2 processing in our architecture, nor have we formalised the precise mechanisms
for familiarity assessment in the Monitor component. Our primary contribution lies in leveraging
parallels between artificial and human intelligence to revisit cognitive science theories and derive
architectural principles for AI systems. The necessary next step is to develop detailed technical
specifications to enable meaningful implementation discussions with the technical community.

It is important to note that our approach does not advocate for neural realism. Instead, aligned
with connectionist principles that intelligence can emerge from networks of simple computational
units [Goodfellow et al., 2016], we focus on functional mechanisms rather than biological fidelity.
Whilst humans consciously regulate their cognitive abilities, System 1.5 represents a computational
implementation of these regulatory processes. This functional approach has historical precedent – for
instance, Bayesian inference models have advanced our understanding of visual perception [Yuille
and Kersten, 2006], whilst combining neurophysiology with feedforward neural networks has helped
explain neural encoding in visual object recognition [Afraz et al., 2014]. Such bidirectional exchange
between cognitive science and AI can create synergistic discoveries.

Our framework primarily addresses metacognitive regulation and conditional knowledge – the
"knowing when and why" aspect of cognition. Whilst declarative knowledge ("knowing what")
and procedural knowledge ("knowing how") are typically implicit in the AI models that System 1.5
regulates, our architecture explicitly designs the conditional knowledge that determines when and
why to use different processing modes. This aligns with research showing that expert performance
relies not just on superior knowledge organisation, but also on highly developed metacognitive skills
that enable monitoring progress and adjusting strategies as needed [Berliner, 1994].

A key insight from our work is that search and pattern recognition are deeply interlinked in expert
decision-making. Rather than being mutually exclusive, System 1 and 2 are often interleaved
processes [Gobet and Simon, 1998, Gobet, 1997]: during System 2’s look-ahead search, System 1’s
pattern recognition suggests possible actions based on both current perception and anticipation. This
suggests that future implementations of System 1.5 should consider how to effectively integrate both
preferred and dispreferred solutions in familiarity assessment, paralleling how language models can
learn from discrepancies between correct and incorrect solutions [Hosseini et al., 2024].
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